LRC Circuit: Frequency of Oscillation determined by R

AI Thread Summary
To determine the resistance needed to change the frequency of a pure LC circuit (L = 340 mH, C = 2200 pF) by 0.10 percent, the angular frequency equation is used, considering critical damping. The initial approach involved manipulating the frequency equation, but the key realization was that the new frequency is 0.999 times the original. By squaring the relationship and solving for resistance, the equation R = (((w - w')^2 - w^2) * 4L^2)^(1/2) was derived. Ultimately, the resistance required results in a decrease in frequency, confirming that K is less than one.
jamesbiomed
Messages
75
Reaction score
0

Homework Statement



How much resistance must be added to a pure LC circuit (L = 340 mH, C = 2200 pF) to change the oscillator's frequency by 0.10 percent?

Will the frequency be increased or decreased?

Homework Equations



I'm assuming critical damping: R^2=4L/C, w=((1/LC)-R^2/(4L^2))^1/2

With no R: w=(1/(LC))^1/2

The Attempt at a Solution



I've been at this for a few hours :/ I'm letting w stand in for frequency since w=2pif the percent change needed for f should be the same for w (I hope). I've tried several approaches:

First, I tried w=(1/LC)^1/2 to get w. Then multiplied w by .001 to get .1%. Then made an equation: w-((1/LC)-R^2/(4L^2))^1/2=.001w

That didn't work, but the answer was close to the given one.

I also tried simply setting .001w=(1/LC-R^2/2l^2)^1/2 and that answer was further off.

If I'm missing anything or you need information I'd be happy to give it I'm really enthusiastic to get this done. Thank you in advance!
 
Physics news on Phys.org
The angular frequency of a damped oscillator is

\omega=\sqrt{\frac{1}{LC}-\left(\frac{R}{2L}\right)^2}

Your first approach is correct, but it would be easier to write ω=K√(1/LC). How much is K? less then 1 or greater then 1? Then you can square both sides. Do it symbolically, do not evaluate. ehild
 
Last edited:
Hey echild. The problem was I wasn't squaring k, just plugging it in after the fact.

K is less than one, so the frequency should be decreased.

For anyone with same problem:
w' is .1 % w.

w'=k(1/LC)^1/2=> (w')^2=k^2/LC=>(w')^2=(.001)^2/(LC) so omega is the square root of that.

Then w-(w^2+(R/2L)^2)^1/2=w'. Solve for R:

R=(((w-w')^2-w^2)4L^2)^1/2. That solved it.

Thank you!
 
I meant that the new angular frequency is 0.999 ω0, where ω0=1/√(LC).

So
\omega=\sqrt{\frac{1}{LC}-\left(\frac{R}{2L}\right)^2}=0.999\sqrt{\frac{1}{LC}}

Squaring both sides:\frac{1}{LC}-\left(\frac{R}{2L}\right)^2=0.998\frac{1}{LC}

0.002\frac{1}{LC}=\left(\frac{R}{2L}\right)^2

ehild
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top