The LRC (a bilingual acronym: in English: Light, Rapid, Comfortable; in French: Léger, Rapide, et Confortable) is a series of lightweight diesel-powered passenger trains that were used on short- to medium-distance inter-city service in the Canadian Provinces of Ontario and Quebec.
LRC was designed to run with locomotives, or power cars, at both ends and provide 125 mph (201 km/h) service on non-upgraded railway routes. To accomplish this, the LRC passenger cars feature active-tilt technology to reduce the forces on the passengers when a train travels at high speeds through curves. LRCs have reached speeds as high as 130 mph (210 km/h) on test runs.
On its only regular service route, on the Quebec City–Windsor Corridor, wear concerns, signalling issues and conflicts with slower-moving freight trains limit this to 100 mph (160 km/h) or less. For service at these speeds, a single power car was used. Special signage allowed the LRC to run at higher speeds than normal traffic across a great portion of the Corridor when the tilt system was enabled.
The LRC locomotives and passenger cars are compatible with conventional equipment. While the last LRC locomotive was removed from service on 12 December 2001, the passenger cars are still in widespread use and form the backbone of Via Rail's services, albeit with the tilt system disabled. The same basic car forms the basis of the Acela in the U.S.
I recently got these electrical experiment boards to do some experiments but I am new to doing experiments with such boards. Can someone help? Thanks in advance
https://ibb.co/zXTbNby
https://ibb.co/tDjKrV0
https://ibb.co/JdCTgqY
https://ibb.co/DDkGjbp
I've been working on designing an experiment over the past few weeks as part of a school project, under the supervision of a teacher.
I have designed a small low-power coil-gun. I have a coil of roughly 60m 24 AWG copper wire wrapped around a length of 2.5cm of clear PVC pipe. I tested the...
Homework Statement
How does one show that q(t) is indeed a solution?
Homework Equations
The Attempt at a Solution
My current idea is that i should come up with any form of solution, like q = Acos(ωt), and slot it in the RHS.
Reason being that if q is indeed a solution, the result of the...
Homework Statement
A 35 mH inductor with 1.0 resistance is connected in series to a 20 µF capacitor and a 60 Hz, 40-V (rms) source. Calculate the phase angle.
Homework Equations
tan φ = (XL - XC) / R
The Attempt at a Solution
Solving for φ:
φ = tan -1 [(XL - XC) / R]
XL = 2πfL = 13.194 Ω...
[Note by mentor: this post does not use the homework template because it was originally posted in a non-homework forum.]
---------------------------------------------
Problem:
What is the average power dissipated by a 25-Ω resistor in an LRC series ac circuit for which the power factor is...
Homework Statement
Given the circuit below (image uploaded) driven at a frequency ##ω=2πƒ## show that
$$|\frac{v_{out}}{v_{in}}|=\frac{1}{\sqrt{1+(\frac{1}{ωτ_{l}}-ωτ_{c})^2}}$$
where ##τ_{c}=RC## and ##τ_{l}+L/R##
Homework Equations
##Z_R=R##, ##Z_L=jωL## and ##Z_C=-j/ωC## where...
Homework Statement
I have been trying to set up an LRC series circuit where in place of an inductor we have a pair of coupled coils. My aim is to determine the resonant frequency in the circuit when the voltage across the resistor or the current in the circuit is at a maximum. I am using a...