Maclaurin series is simple. Let's see have an example, f(x)=sin(x). Then suppose I can write the function as sin (x)=a+bx+cx^{2}+dx^{3}+...
Our task is to compute a,b,c,d,... To find a, set x=0 to find a=sin(0)=0.
To find b, differentiate w.r.t x to find cos(x)=b+2cx+3dx^{2}. To find b, set x=0 to see that:
b=cos(0)=1. So the series is sin(x)=x+cx^{2}+dx^{3}+...
To find c, differentiate twice to find:
-sin(x)=2c+6dx+...
Set x=0 to see that c=0.
Again apply the same methodology to find d. sin(x)=x+dx^{3}+...
Differentiate three times to get -cos(x)=6d+...
set x=0 to find d=-1/6=-1/3!
Then sin(x)=x-x^{3}/3!+...
That is the idea of Maclaurin's series.