Magnetic Donuts: How to Tell North & South Poles?

  • Thread starter Thread starter X_Art_X
  • Start date Start date
  • Tags Tags
    Magnetic Poles
AI Thread Summary
Donut-shaped ferrite magnets, used in core memory from the 1950s to 1970s, can be magnetized in clockwise or counterclockwise directions, but they do not possess distinct north or south poles due to their toroidal shape. The magnetic field exists within the magnet without poles, and this can be demonstrated by placing a known magnet nearby to observe alignment based on the magnetization direction. To determine the magnetization direction, one can use a coil to measure the magnetic field or observe the current response when energized. Despite lacking poles, the magnet can still exhibit directional properties in its magnetic field. Understanding these principles is essential for practical applications and experiments with magnetic materials.
X_Art_X
Messages
15
Reaction score
0
Hi Guys :)
There were donut shaped ferrite magnets used in core memory of the 50s - 70s that stored bits by being electronically magnetised in a clockwise, or counter clockwise direction.

If you had a larger donut shaped magnet that was magnetised in a clockwise or counter clockwise direction how does it have a north or south pole?

Would there be any way to tell,
say with metal or other magnets,
which direction the donut shaped magnet was magnetised?
Thanks, Art.
 
Physics news on Phys.org
X_Art_X said:
If you had a larger donut shaped magnet that was magnetised in a clockwise or counter clockwise direction how does it have a north or south pole?
It does not.
X_Art_X said:
Would there be any way to tell,
say with metal or other magnets,
which direction the donut shaped magnet was magnetised?
Take a magnet with known orientation, put it close to the ring, its alignment then depends on the orientation of the magnetization. Better: make an air gap in the magnet, measure the field there.
 
X_Art_X said:
Hi Guys :)
There were donut shaped ferrite magnets used in core memory of the 50s - 70s that stored bits by being electronically magnetised in a clockwise, or counter clockwise direction.

If you had a larger donut shaped magnet that was magnetised in a clockwise or counter clockwise direction how does it have a north or south pole?

Would there be any way to tell,
say with metal or other magnets,
which direction the donut shaped magnet was magnetised?
Thanks, Art.

You can perform a "destructive read" of the core with a test coil, much like those memory bits were read with core memories. Then if necessary, you write it back to its original state.

https://en.wikipedia.org/wiki/Magnetic-core_memory

:smile:
 
  • Like
Likes mfb
X_Art_X said:
If you had a larger donut shaped magnet that was magnetised in a clockwise or counter clockwise direction how does it have a north or south pole?
A toroid has no north- or south-pole, just a magnetic field inside. Neither has a solenoid core a north- or south-pole inside, just a magnetic field. Actually a pole is created when the magnetic field crosses a discontinuity in the magnetic permeability, say at the ends of a solenoid core, and because a toroid core has no ends/discontinuities, it has no poles.
X_Art_X said:
Would there be any way to tell, say with metal or other magnets, which direction the donut shaped magnet was magnetised?
Well, you could wind some coil around the toroid and supply this coil with a sine-voltage. Due to the magnetizing curve, the dB/dH will be smaller when the direction of the current tries to magnitize the toroid even more. Thus the shape of the current will not be symmetric: The amplitude of the current will be larger in the small dB/dH direction due to a smaller self-induction in this direction.
mag19.gif
 
Hi Guys,
Thanks for the replies :) but I’m polluting the thread by introducing a practical application.
For core memory it’s square (rectangular loop) ferrite with hysteresis quality:
http://www.doitpoms.ac.uk/tlplib/ferroelectrics/images/img023.gif
but forget about that :D I was meaning to disqualify electronic means of reading the state,
and pretend the viewpoint with the tools of an inquisitive a child with a larger donut shaped permanent magnet,
and perhaps the same child would have other magnets, and other basic material, and simple mechanical skills.
All of the magnets would have strong latency from whenever they were magnetised in the first place.

mfb, your first answer, take another magnet, say a bar magnet, put it close to the ring... In what orientation?
If you point the bar magnet north pole somewhere around the outer edge?
If the ring has no north or south pole, how would the ring magnet ever repel or attract the north pole of the bar magnet?
Cheers, Art.
 
The magnet has a stray field which is circular as well. It does not have poles, but if you are close to the ring it has a "north" and a "south" direction along the ring. Your magnet will try to align to get the same direction as the ring.
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.

Similar threads

Replies
10
Views
2K
Replies
4
Views
2K
Replies
18
Views
3K
Replies
13
Views
3K
Replies
90
Views
13K
Back
Top