Is the Correct Option for Magnetic Field Homework Statement (d)?

Pushoam
Messages
961
Reaction score
53

Homework Statement


upload_2017-12-13_23-24-13.png


Homework Equations

The Attempt at a Solution



Using ## \nabla \times \vec A = \vec B##. I got that both ##\v A_1 ~~and~~ \vec A_2 ## produce ## \vec B##. So, the correct option is (d).

Is this correct?

[/B]
 

Attachments

  • upload_2017-12-13_23-24-13.png
    upload_2017-12-13_23-24-13.png
    20.1 KB · Views: 722
  • upload_2017-12-13_23-37-26.png
    upload_2017-12-13_23-37-26.png
    20.1 KB · Views: 491
Physics news on Phys.org
Yes.
 
Thanks.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top