Magnetic field of long parallel straight wires

AI Thread Summary
The discussion focuses on calculating the magnetic field (B) created by two infinitely long parallel wires carrying currents in opposite directions. For part (a), the correct expression for B along the y-axis is derived as B = μIa/π(a²+y²). The participants clarify that the magnetic field decreases as y increases, confirming the inverse relationship. A graph of B versus y is suggested, indicating that as y approaches infinity, B approaches zero. Understanding the behavior of B due to a single wire is also mentioned as relevant to the problem.
sweetdion
Messages
64
Reaction score
0

Homework Statement


Two infinitely long parallel straight wires carry currents in the +- z direction as shwn in the figure below. Each wire is located on the x-axis a distance of a from the origin.

a) Determine B as a function of y along the line x=0
b) Sketch a graph of B vs. y along the line x=0, including all values of y.


Homework Equations


B=u0I/2PiR


The Attempt at a Solution


for part a i get u0I/PiR
for part b as y increases, B decreases because they're inversely related?
 
Physics news on Phys.org
sweetdion said:

Homework Equations


B=u0I/2PiR


The Attempt at a Solution


for part a i get u0I/PiR
Not quite. It looks like you're calculating B at the origin (x=y=0) only, but you need to find B all along the y-axis, as a function of y. So you should get some expression that has y in it.

for part b as y increases, B decreases because they're inversely related?
For this, you'll need to get part (a) done correctly first, then you can sketch the function you get for (a).
 
well if one current is flowing in the +z direction and one is flowing in the -z direction the magnetic field is the following:

B=μI/2∏ {[(-y/(x-a)²+y²)+(y/(x+a)²+y²)]ihat + [(x-a/(x-a)²+y²)+(x+a/(x+a)²+y²)]jhat

If we let x equal 0 and reduce, we get B = μIa/∏(a²+y²)

I just know this from the answer in the back of my book, and I have no idea how they get it. :(

From this equation you can deduce the graph. As y goes to infinity it seems as if B goes to zero. Correct?
 
Last edited:
sweetdion said:
well if one current is flowing in the +z direction and one is flowing in the -z direction the magnetic field is the following:

B=μI/2∏ {[(-y/(x-a)²+y²)+(y/(x+a)²+y²)]ihat + [(x-a/(x-a)²+y²)+(x+a/(x+a)²+y²)]jhat

If we let x equal 0 and reduce, we get B = μIa/∏(a²+y²)

I just know this from the answer in the back of my book, and I have no idea how they get it. :(
How about B due to a single wire, do you know that?
From this equation you can deduce the graph. As y goes to infinity it seems as if B goes to zero. Correct?
Yes.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top