Magnetic Field of Magnetic Dipole Moment

AI Thread Summary
The discussion revolves around the calculation of the magnetic field \(\vec{B}\) from the magnetic vector potential \(\vec{A}\) as presented in Jackson's "Classical Electrodynamics." Participants are trying to derive the expression for \(\vec{B}\) using the curl of \(\vec{A}\), with specific focus on the term \(-({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right]\). Clarifications are sought on how to arrive at the final formula for \(\vec{B}\), particularly the transformation of the gradient terms. There is an emphasis on the need for a clearer understanding of the mathematical steps involved, especially regarding the treatment of constants and the application of vector calculus identities. The conversation highlights the complexity of the derivation and the potential obscurity in Jackson's explanations.
Morto
Messages
12
Reaction score
0
I'm seeking some clarification on a topic found in Jackson 'Classical Electrodynamics' Chapter 5. This deals with the magnetic field of a localised current distribution, where the magnetic vector potential is given by
\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}

and the magnetic induction \vec{B} is the curl of this \vec{B} = \nabla \times \vec{A}.
I know that the end result should be
\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m} - \vec{m}}{\left|\vec{x}\right|^3}\right]
Where \vec{n} is the unit vector in the direction of \vec{x}
But I'm struggling to do this calculation for myself.

I know that
\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left(\nabla \times \left(\frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}\right)\right) \\<br /> = \frac{\mu_0}{4\pi}\left(\vec{m}\left(\nabla\cdot\frac{\vec{x}}{\left|\vec{x}\right|^3}\right) - \frac{\vec{x}}{\left|\vec{x}\right|^3}\left(\nabla\cdot \vec{m}\right)\right)

How does Jackson end up at the result quoted?
 
Physics news on Phys.org
Your second term is wrong. It should be
-({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right].
 
Hi

I'm new to this forum! Googleing for the questioned problem I found this forum. Having the same problem as the author of this thread, I want to ask if someone has a solution on how Jackson found the formula for \vec{B}?

I tried my luck with the product rule \nabla\times(\vec{A}\times\vec{B})=(\vec{B}\cdot\nabla)\vec{A}-(\vec{A}\cdot\nabla)\vec{B}+\vec{A}(\nabla\cdot\vec{B})-\vec{B}(\nabla\cdot\vec{A}) but came to no conclusion.

kind regards,
derivator

(sorry for my english, it's not my mother tongue)
 
Last edited:
As I said in my post, the curl of the cross product should be
\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left(\nabla \times \left(\frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}\right)\right) \\<br /> = \frac{\mu_0}{4\pi}\left(\vec{m}\left(\nabla\cdot\frac{\vec{x}}{\left|\vec{x}\right|^3}\right) - ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right].
This follows because m is a constant so only two terms of your four enter.
Given this result, the first term is a delta function is not needed if r>0.
The second term gives the result in the first post if the delta function singularity at the origin is again ignored.
Jackson is a bit obscure on this.
 
Hi,
thanks for your answer.

Could you get a bit more detailed on how to show that

- ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right]=\left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m}\right) - \vec{m}}{\left|\vec{x}\right|^3}\right]

is correct?
 
You really need a better textbook.
Sorry I can't seem to find my latex error below. If hyou can read or correct it, it should show you what to do.
- ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right]=
-{\vec x} ({\vec m}\cdot\nabla)\frac{1}{|{\vec x}|^3}
-\frac{1}{|{\vec x}|^3} ({\vec m}\cdot\nabla){\vec x}
 
Last edited by a moderator:
The point is that the m.del acts on only one function at a time.
 
<br /> - (\vec{m}\cdot\nabla)\left[\frac{\vec{x}}{|\vec {x}|^3}\right]=<br /> -{\vec x} ({\vec m}\cdot\nabla)\frac{1}{|{\vec x}|^3}<br /> -\frac{1}{|{\vec x}|^3} ({\vec m}\cdot\nabla){\vec x}<br />
 
Derivator said:
Hi,
thanks for your answer.

Could you get a bit more detailed on how to show that

- ({\vec m}\cdot\nabla)\left[\frac{\vec x}{|{\vec x}|^3}\right]=\left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m}\right) - \vec{m}}{\left|\vec{x}\right|^3}\right]

is correct?

\nabla\frac{\vec{r}}{r^{3}}=\left(\nabla\frac{1}{r^{3}}\right)\vec{r}+\frac{\nabla\vec{r}}{r^{3}}=-\frac{3\vec{r}\vec{r}}{r^{5}}+\frac{\mathbf{I}}{r^{3}}

\vec{m}\cdot\nabla\frac{\vec{r}}{r^{3}}=\vec{m}\cdot\left(-\frac{3\vec{r}\vec{r}}{r^{5}}+\frac{\mathbf{I}}{r^{3}}\right)=-\frac{3(\vec{m}\cdot\vec{r})\vec{r}}{r^{5}}+\frac{\vec{m}}{r^{3}}

I is the unit tensor.
 
Back
Top