Morto
- 12
- 0
I'm seeking some clarification on a topic found in Jackson 'Classical Electrodynamics' Chapter 5. This deals with the magnetic field of a localised current distribution, where the magnetic vector potential is given by
\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}
and the magnetic induction \vec{B} is the curl of this \vec{B} = \nabla \times \vec{A}.
I know that the end result should be
\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m} - \vec{m}}{\left|\vec{x}\right|^3}\right]
Where \vec{n} is the unit vector in the direction of \vec{x}
But I'm struggling to do this calculation for myself.
I know that
\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left(\nabla \times \left(\frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}\right)\right) \\<br /> = \frac{\mu_0}{4\pi}\left(\vec{m}\left(\nabla\cdot\frac{\vec{x}}{\left|\vec{x}\right|^3}\right) - \frac{\vec{x}}{\left|\vec{x}\right|^3}\left(\nabla\cdot \vec{m}\right)\right)
How does Jackson end up at the result quoted?
\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}
and the magnetic induction \vec{B} is the curl of this \vec{B} = \nabla \times \vec{A}.
I know that the end result should be
\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left[\frac{3\vec{n}\left(\vec{n}\cdot\vec{m} - \vec{m}}{\left|\vec{x}\right|^3}\right]
Where \vec{n} is the unit vector in the direction of \vec{x}
But I'm struggling to do this calculation for myself.
I know that
\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \left(\nabla \times \left(\frac{\vec{m}\times\vec{x}}{\left|\vec{x}\right|^3}\right)\right) \\<br /> = \frac{\mu_0}{4\pi}\left(\vec{m}\left(\nabla\cdot\frac{\vec{x}}{\left|\vec{x}\right|^3}\right) - \frac{\vec{x}}{\left|\vec{x}\right|^3}\left(\nabla\cdot \vec{m}\right)\right)
How does Jackson end up at the result quoted?