Magnetic flux through a rotating bar

AI Thread Summary
The discussion centers on the confusion regarding the changing magnetic flux through a rotating bar in a uniform magnetic field. The key point is that while the magnetic field (B) and the area may seem constant, the area "swept" by the bar changes as it rotates, leading to a variation in magnetic flux over time. This change in flux induces an electromotive force (emf), which is expressed through the equation dEMF = Bvdr. The relationship between the length of the bar, its speed, and the induced emf is crucial to understanding this phenomenon. Ultimately, the varying area due to the rotation is what causes the change in magnetic flux.
Baptiste Debes
Messages
6
Reaction score
0
Hello everyone,
My question is between theorie and practical (so I'm still wondering if it's the right place). I'm reading Serway and Jewett. There's an example about the magnetic flux through a rotating bar and so and induced emf. I understand this emf will be equal to the the opposite of the variation of magnetic flux with respect to the time. But here, as you may see in the picture, B is uniform. (Hoping I can post this kind of picture, I'll delete it straightaway if not)
JdsCX9g.png

So why is the flux changing ? The area (assuming there is one ?), angle and B field are constant. They're actually using a result coming from a previous example : the sliding bar on two rails with a resistance R between and immerged in a uniform magnetic field. This result is that EMF = -Blv (with l the length of the bar and v its speed). I understood this. But I don't get it when they're using it for the rotating bar saying dEMF = Bvdr.

Many thanks,

Baptiste Debes
 
Physics news on Phys.org
Baptiste Debes said:
So why is the flux changing ?
The area "swept by" the bar is changing.
 
Ok, I understand, but this area is the same and B is uniform. When you take definition of magnetic flux and than its variation with time I don't see mention of this kind of change.

Thank you for the time you're giving to me
 
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Back
Top