Magnetic Vector Potential prob 5.32 Griffiths

precise
Messages
13
Reaction score
0
Please refer to the problem towards the end of page in the following link. It's related to discontinuity in normal derivative of magnetic vector potential across a current carrying surface. Prob 5.32 in Griffths.

http://physicspages.com/2013/04/08/magnetostatic-boundary-conditions/

The solution says "Since A is continuous across the surface, the derivatives in directions perpendicular to the surface (that is, {x} and {y}) will be the same on both sides."

I couldn't understand the above argument which says the derivatives along x and y are same across the boundary. What is the calculus I'm missing. Could you explain in detail, or suggest some reading for that math part I'm missing.

I found this thread, with same concern. It's still not clear why though.

https://www.physicsforums.com/showthread.php?t=498682

Thanks
 
Last edited:
Physics news on Phys.org
While your weblink is a bit handwaving to my taste, it's very clearly written in Griffiths's book. The magnetic field has only a finite jump, not a more severe singularity. From
\vec{B}=\vec{\nabla} \times \vec{A}
you get for any surface F with boundary \partial F.
\int_F \mathrm{d}^2 \vec{F} \cdot \vec{B}=\int_{\partial F} \mathrm{d} \vec{x} \cdot \vec{A}.
By the usual arguments with an infinitesimal rectangle penetrating the surface perpendicularly and from the finiteness of \vec{B} along this rectangle you get that in the limit of a vanishing height the surface integral is 0 and so also the line integral over the vector potential. This implies that the tangential components of the vector potential must be continuous.

From the Coulomb-gauge constraint
\vec{\nabla} \cdot \vec{A}=0
it follows in a similar way by using Gauß's integral theorem that also the normal components of the vector potential are continuous across the surface.

The tangential components of the magnetic field, however must have a jump if a surface current is present as in Griffiths's example. This implies that the derivatives of \vec{A} must have these jumps since \vec{B}=\vec{\nabla} \times \vec{A}.

Now I'd go along as follows. Write down Ampere's Law for the above described infinitesimal square, which you orient such that its surface-normal vector is in direction of the surface current \vec{K}. Then you get
\mu I=\int_F \mathrm{d}^2 \vec{x} (\vec{\nabla} \times \vec{B})=-\int_F \mathrm{d}^2 \vec{x} \cdot \vec{\nabla}^2 \vec{A}.
This will immediately give
(\vec{n} \cdot \vec{\nabla}) \vec{A}=-\mu_0 \vec{K}.
You just have to work out the last integral above in the limit of an infinitesimal square!
 
  • Like
Likes 1 person
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top