Magnitude of a component of a triple star

AI Thread Summary
The apparent total magnitude of a triple star system is given as 0.0, with two components having apparent magnitudes of 1.0 and 2.0. The discussion revolves around calculating the apparent magnitude of the third component using the relationship between flux densities and magnitudes. By summing the individual flux densities of the components, the apparent magnitude of the third component is derived to be approximately 0.9. The calculations confirm that the relationship between the individual flux densities and the total flux density leads to the correct answer. The final result aligns with the expected outcome of the problem.
TheSodesa
Messages
224
Reaction score
7

Homework Statement


The apparent total magnitude of a triple star is ##m_0 = 0,0##. The apparent magnitudes of two of its components are ##m_1 = 1,0## and ##m_2 = 2,0##.

What is the apparent magnitude of the third component?

Answer: 0,9

Homework Equations


Since according to Norman Pogson (1856), the ratio of two subsequent classes of brightnesses (flux densities)
\begin{equation}
\frac{F_m}{F_{m+1}} = 100^{1/5} = 10^{2/5} = 10^{0,4},
\end{equation}
the difference between two apparent magnitudes:
\begin{equation}
m_x - m_y = -\frac{5}{2}\lg{ \left( \frac{F_x}{F_y} \right)}
\end{equation}

If the magnitude ##0## is chosen to represent a certain flux density ##F_0##, generally corresponding to the flux density ##F## there is a corresponding magnitude
\begin{equation}
m = -\frac{5}{2}\lg{ \left( \frac{F}{F_0} \right)}
\end{equation}

The Attempt at a Solution



From the assignment, the total magnitude of the system is chosen to be zero. Therefore we can get the apparent magnitude of the third component from ##(3)## as follows:
\begin{equation}
m_3 = -\frac{5}{2}\lg{ \left( \frac{F_3}{F_0} \right)},
\end{equation}
where ##F_0## is the flux density of the system.

Since I have no idea, what the flux densities are, I think I might be better off trying to solve for the ratio ##\frac{F_3}{F_0}##. Now
\begin{equation}
\frac{F_3}{F_1} = 10^{-0,4(m_3 - m_1)} \text{ and } \frac{F_3}{F_2} = 10^{-0,4(m_3 - m_2)}
\end{equation}
Solving these for ##F_3##:
\begin{equation}
F_3 = 10^{-0,4(m_3 - m_1)}F_1 = 10^{-0,4(m_3 - m_2)}F_2
\end{equation}

Plugging into ##(4)##:
\begin{equation}
m_3 = -\frac{5}{2}\lg{ \left( 10^{-0,4(m_3 - m_1)}\frac{F_1}{F_0} \right)},
\end{equation}
Now
\begin{equation}
\frac{F_1}{F_0} = 10^{-0,4m_1},
\end{equation}
which when plugged into ##(7)## yields ##m_3 = m_3##, so I am obviously missing something.

But what exactly?
 
Physics news on Phys.org
TheSodesa said:
I am obviously missing something
Leaving magnitudes aside for the moment, what do you think the relatioship would be between the individual flux densities and the combined flux density?
 
  • Like
Likes TheSodesa
haruspex said:
Leaving magnitudes aside for the moment, what do you think the relatioship would be between the individual flux densities and the combined flux density?

Well, picking up my second edition of Understanding Physics by Mansfield and O'Sullivan, flux density is defined as follows: F:= \lim_{\Delta A \rightarrow 0} \frac{\Delta \Phi}{\Delta A}\hat{t}, where ##\Phi## is the flux through area ##A## on the enclosing surface, and ##\hat{t}## a unit vector pointing in the direction of the flux. If we have 3 sources producing flux inside of a surface, at each point on the surface their flux should be summed, meaning the total flux density
\begin{equation}
F_{tot} = \lim_{\Delta A \rightarrow 0} \frac{\sum_{i=1}^{n}\Delta \Phi_i \hat{t_i}}{\Delta A} = \sum_{i=1}^{n}F_i,
\end{equation}
where ##n## is the number of elements producing flux. At least that's what my intuition says.
 
Last edited:
haruspex said:
Leaving magnitudes aside for the moment, what do you think the relatioship would be between the individual flux densities and the combined flux density?

If my assumption in post #3 is correct, the total flux detected at the observation point ##F_0 = F_1 + F_2 + F_3 \iff F_3 = F_0 - (F_1 + F_2)##. Then ##(4)## becomes
\begin{equation}
m_3 = -\frac{5}{2}\lg \left( \frac{F_3}{F_0} \right) = -\frac{5}{2}\lg \left( 1 - \frac{F_1 + F_2}{F_0} \right) =
-\frac{5}{2}\lg \left( 1 - \frac{F_1}{F_0} - \frac{F_2}{F_0} \right)
\end{equation}

Again, we can solve for the ratios ##\frac{F_1}{F_0}## and ##\frac{F_2}{F_0}## as follows using ##(3)##:
\begin{equation}
\frac{F_1}{F_0} = 10^{-0,4m_1} \text{ and } \frac{F_2}{F_0} = 10^{-0,4m_2}
\end{equation}

Therefore
<br /> m_3 = -\frac{5}{2}\lg \left( 1 - \frac{F_1}{F_0} - \frac{F_2}{F_0} \right) = -\frac{5}{2}\lg \left( 1 - 10^{-0,4m_1} - 10^{-0,4m_2} \right) = 0,883002 \approx 0,9,<br />
which was the desired answer.

Thanks. :smile:
 
Last edited:
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top