Magnitude of the Torque generated at Pivot Point.

AI Thread Summary
To calculate the torque generated about the pivot point, the formula used is torque = r * F * sin(theta). In this scenario, the force applied is 10 N, the length of the torque wrench (radius) is 0.63 m, and the angle is 45 degrees. The key factors in determining the torque are the moment arm and the force applied perpendicular to it. The user expresses uncertainty about how to start the calculation but identifies the necessary variables for the equation. Understanding these components is essential for solving the torque problem effectively.
Mr. Sinister
Messages
26
Reaction score
0

Homework Statement



A force of 10 N is applied to the end of a 0.63 m long torque wrench at an angle 45 degrees from a line joining the pivot point to the handle. What is the magnitude of the torque generated about the pivot point?

Homework Equations



rFsin=




3. The Attempt at a Solution [
Not quite sure how to get started?

/b]
 
Physics news on Phys.org
Mr. Sinister said:

Homework Statement



A force of 10 N is applied to the end of a 0.63 m long torque wrench at an angle 45 degrees from a line joining the pivot point to the handle. What is the magnitude of the torque generated about the pivot point?

Homework Equations



rFsin=




3. The Attempt at a Solution [
Not quite sure how to get started?

/b]
rFsintheta=Torque; what is r, what is theta, and what is F??
 
Force is 10 N, Theta must be 45 degrees, and the radius must be 0.63 m I think?
 
Thank you, that link helped.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top