Make sure the Lagrangian symmetry?

centry57
Messages
8
Reaction score
0
Is the Lagrangian of the neutral Proca field
\mathcal{L}=-\frac{1}{16\pi}\left(F^{\mu\nu}F_{\mu\nu}-2m^2 A_{\mu} A^{\mu}\right)
symmetric?
And How to make sure whether it's symmetric.
 
Physics news on Phys.org
centry57 said:
Is the Lagrangian of the neutral Proca field
\mathcal{L}=-\frac{1}{16\pi}\left(F^{\mu\nu}F_{\mu\nu}-2m^2 A_{\mu} A^{\mu}\right)
symmetric?
And How to make sure whether it's symmetric.

Symmetric in what?

AB
 
I mean if the Stress-energy momentum has the form T_{\mu\nu}=T_{\nu\mu}
 
Well, take the functional derivative with respect to the metric of this Lagrangian. What do you get?

If the EM-tensor is not symmetric, you can construct the so-called Belinfante tensor; see for instance DiFrancesco's "Conformal Field Theory", 2.5.1 :)
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top