Manipulating a formula for a relativistic Doppeler shift

71GA
Messages
208
Reaction score
0

Homework Statement


The spaceship is approaching Earth with a speed ##\scriptsize 0.6c## under an angle
of ##\scriptsize 30^\circ##. What frequency does an observer on Earth measure if
spaceship is sending frequency ##\scriptsize 1.00\cdot10^9Hz##.

Homework Equations



Lets say we take the standard configuration when ##\scriptsize x'y'## is moving away from system ##\scriptsize xy## (image 1). By knowing that the phase is constant in all frames ##\scriptsize \phi=\phi'## we can derive the Lorenz transformations for a standard configuration.

Derivation (using the parametrization):
\begin{align}
\phi &= \phi'\\
-\phi &= -\phi'\\
k \Delta r - \omega \Delta t &= k' \Delta r'- \omega'\Delta t'\\
[k_x , k_y , k_z][\Delta x , \Delta y , \Delta z] - \omega \Delta t &= [{k_x}'\! , {k_y}'\! , {k_z}'][\Delta x'\! , \Delta y'\! , \Delta z']\! - \!\omega'\Delta t'\\
k_x \Delta x + k_y \Delta y + k_z \Delta z - \omega \Delta t&= {k_x}'\Delta x' + {k_y}' \Delta y' + {k_z}' \Delta z'\! - \!\omega' \Delta t'\\
{k_x} \gamma \Bigl(\!\Delta x' + u\Delta t' \!\Bigl) + {k_y} \Delta y' + {k_z} \Delta z' - \omega \gamma \left(\Delta t' + \Delta x' \frac{u}{c^2}\right)&= ...\\
{k_x} \gamma \Delta x' + k_x \gamma u\Delta t' + {k_y} \Delta y' + {k_z} \Delta z' - \omega \gamma \Delta t' - \omega \gamma \Delta x' \frac{u}{c^2}&= ...\\
\gamma \Bigl(\!k_x - \omega \frac{u}{c^2}\! \Bigl) \Delta x' + k_y \Delta y' + k_z \Delta z' - \gamma \Bigl(\omega - {k_x} u \Bigl) \Delta t' &= k_x' \Delta x' + k_y' \Delta y' + k_z' \Delta z' - \omega' \Delta t'\\
\end{align}
Lorentz transformations and their inverses (are derived similarly):
\begin{align}
&\boxed{\omega' = \gamma\Bigl(\omega - {k_x} u \Bigl)} & &\boxed{\omega = \gamma\Bigl(\omega' + {k_x}' u \Bigl)}\\
&\boxed{k_x' = \gamma \Bigl(k_x - \omega \frac{u}{c^2} \Bigl)} & &\boxed{k_x = \gamma \Bigl(k_x' + \omega' \frac{u}{c^2} \Bigl)}\\
&\boxed{k_y' = k_y} & &\boxed{k_y = {k_y}'}\\
&\boxed{k_z' = k_z} & &\boxed{k_z = {k_z}'}
\end{align}
We can express Lorentz transformations and their inverse using some trigonometry (##\scriptsize k_x = k \cos{\xi} = \frac{\omega}{c} \cos{\xi}##, ##\scriptsize k_y = k \sin{\xi} = \frac{\omega}{c} \sin{\xi}## and ##\scriptsize k_z = 0##) as:
\begin{align}
&\boxed{\omega' = \gamma \, \omega \! \Bigl(1 - \cos{\xi} \frac{u}{c} \Bigl)}& &\boxed{\omega = \gamma \, \omega' \! \Bigl(1 + \cos{\xi'}\frac{u}{c} \Bigl)}\\
&\boxed{k_x' = \gamma \, \frac{\omega}{c} \! \Bigl(\cos{\xi} - \frac{u}{c} \Bigl)}& &\boxed{k_x = \gamma \, \frac{\omega'}{c} \! \Bigl(\cos{\xi'} + \frac{u}{c} \Bigl)}\\
&\boxed{k_y' = \frac{\omega}{c} \sin{\xi}} & &\boxed{k_y = \frac{\omega'}{c} \sin{\xi'}}\\
&\boxed{k_z' = k_z} & &\boxed{k_z = {k_z}'}
\end{align}

The Attempt at a Solution





If i draw the picture in black color (image 2) it occurred to me that solving this case could be possible by simply using a relativistic Doppeler effect shift equation for 2 bodies which are closing in (in which i would use the ##\scriptsize u_x = u \cdot \cos 30^\circ##).

$$\nu = \nu' \sqrt{\frac{c+u_x}{c-u_x}} \approx 1.78\cdot 10^8Hz$$

Am i allowed to solve this case like this?

I wasnt so sure about the above solution, so i tried to get the similar situation to the one i had in image 1. I noticed that if i rotate coordinate systems (image 2 - systems which are colored in red) i get fairly similar configuration, with the ##\scriptsize \xi## and ##\scriptsize u## a bit different than the ones in image 1. I wonder how do the Lorentz transformation change? Can anyone tell me?
 
Last edited by a moderator:
Physics news on Phys.org
Im not sure which images you are talking about...you sure they were uploaded correctly?
 
spaderdabomb said:
Im not sure which images you are talking about...you sure they were uploaded correctly?

Yes.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top