Mass on an inclined plane with friction badly

AI Thread Summary
A mass with an initial velocity of 40 m/s travels up an inclined plane at a 30° angle, facing friction with a coefficient of 0.15. The discussion revolves around calculating how far the mass will ascend before stopping, its speed upon returning to the bottom, and the percentage of mechanical energy lost during the trip. The work-energy theorem is applied to derive equations for distance and final speed, but the user struggles with the third part regarding energy loss. Initial calculations yielded a distance of 0.598 m and a return speed of 2.23 m/s, but the user doubts their accuracy and seeks assistance.
bmx_Freestyle
Messages
11
Reaction score
0
There is a mass at the bottom of an inclined plane. It travels with an initial velocity up the inclined plane at an angle θ. There is a coefficient of friction on the ramp. How far up the ramp will the mass go before stopping? What is the speed of the block when it returns to the bottom of the ramp? What percent of the initial total mechanical energy was lost during the mass's trip (going up and then back down?
m=5 kg
vo=40 m/s
θ=30°
S=the distance you are looking for
Coefficient of friction (μ) = 0.15

Work energy theorem=mg(hf-ho) + 1/2 m (vf^2-vo^2) +fs

Attempt:
i set up the work energy theorem and simplified it down to "work=mghf-1/2mvo^s+μ
mgs" and solved for s
and then i used "work= -mgho + 1/2mvf^s +μ
mgs to solve for vf
i honestly had no clue what to do for the third part of this problem

I don't think my answers are right bc i got 0.598 m fr the first part and 2.23 m/s fr the second part...and i couldn't figure out the third part

Help would be appreciated. Thank u very much to all!
 
Physics news on Phys.org
don't make two threads that are exactly the same, one after another. I helped you in your other thread.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top