Mastering Determinants: A Scientist's Approach to Solving Equations

  • Thread starter Thread starter Turion
  • Start date Start date
  • Tags Tags
    Determinant
Turion
Messages
145
Reaction score
2

Homework Statement



PZn1tG3.png


Homework Equations





The Attempt at a Solution



XdrDSIB.png
 
Physics news on Phys.org
Turion said:

Homework Statement



PZn1tG3.png


Homework Equations





The Attempt at a Solution



XdrDSIB.png

What is your question?
 
If you are trying to evaluate the determinant, there is an arithmetic mistake in calculating the first 2x2 minor, specifically in calculating a12*a21.
 
Thanks. I make so many dumb mistakes. :(
 
Turion said:
Thanks. I make so many dumb mistakes. :(

You mean like not stating the question?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top