Materials Engineering - Aluminum Tubing Strength

In summary, the problem is to determine the lowest mass per unit length of aluminum tubing that can withstand a peak net torque F without bending, breaking, or losing structural integrity. The tubing must have a width W (W ≥ 1.27cm), height H (H ≥ 1.27cm), and thickness T (T ≥ 0.15875), with a radius R (2R ≤ 0.75W) hole drilled through its width, and a steel rod radius R inserted through the hole. The material used is aluminum with a max tensile strength of 18,000 psi (125 MPa), max yield strength of 8,000 psi (55MPa), and elongation of 20%. The
  • #1
Axecutioner
32
0
Background info: This is for a trebuchet I plan on building. Obviously lighter is better especially for the throwing arm which is why I need your help in figuring out that problem, so I can get it as light as possible without it having even a remote chance of failing. If there's information missing from the problem just let me know and I'll try to reword it if needed. The pic below is kind of another example of what's going on, but slightly different with the forces involved.

Assume the following:
-Aluminum has a max tensile strength of 18,000 psi (125 MPa), max yield strength of 8,000 psi (55MPa), and elongation (stretch before ultimate failure) of 20%.
-The steel rod is infinitely strong and won't bend or break (so it isn't a factor in the problem)
-The length of the aluminum tubing is 50 - 150cm (just to eliminate any weirdness with really short or really long lengths), I don't think the actual length matters in this.
-The aluminum tubing is free to rotate about the steel rod.

Question: If rectangular aluminum tubing width W (W ≥ 1.27cm), height H (H ≥ 1.27cm), and thickness T (T ≥ 0.15875) has a radius R (2R ≤ 0.75W) hole drilled through it's width, and a steel rod radius R is put through that hole, and the aluminum tubing undergoes a peak net torque F ( about the steel rod, what is the lowest mass per unit length of aluminum tubing that can hold that torque F before bending, breaking, or losing structural integrity, and what are the dimensions of that tubing?

Very lame and basic pic: http://img854.imageshack.us/img854/5247/badexampledrawing.png

Please show all work involved in this problem. Thank you very much in advance for any help!
 
Last edited by a moderator:
Engineering news on Phys.org
  • #2
Axecutioner said:
Background info: This is for a trebuchet I plan on building. Obviously lighter is better especially for the throwing arm which is why I need your help in figuring out that problem, so I can get it as light as possible without it having even a remote chance of failing. If there's information missing from the problem just let me know and I'll try to reword it if needed. The pic below is kind of another example of what's going on, but slightly different with the forces involved.

Assume the following:
-Aluminum has a max tensile strength of 18,000 psi (125 MPa), max yield strength of 8,000 psi (55MPa), and elongation (stretch before ultimate failure) of 20%.
-The steel rod is infinitely strong and won't bend or break (so it isn't a factor in the problem)
-The length of the aluminum tubing is 50 - 150cm (just to eliminate any weirdness with really short or really long lengths), I don't think the actual length matters in this.
-The aluminum tubing is free to rotate about the steel rod.

Question: If rectangular aluminum tubing width W (W ≥ 1.27cm), height H (H ≥ 1.27cm), and thickness T (T ≥ 0.15875) has a radius R (2R ≤ 0.75W) hole drilled through it's width, and a steel rod radius R is put through that hole, and the aluminum tubing undergoes a peak net torque F ( about the steel rod, what is the lowest mass per unit length of aluminum tubing that can hold that torque F before bending, breaking, or losing structural integrity, and what are the dimensions of that tubing?

Very lame and basic pic: http://img854.imageshack.us/img854/5247/badexampledrawing.png

Please show all work involved in this problem. Thank you very much in advance for any help!

What is the context of this project? Is it for schoolwork?
 
Last edited by a moderator:
  • #3
I'm building a trebuchet using aluminum tubing, and I want to know what size tubing I can use to keep it as light as possible without breaking. No school involved.
 
  • #4
From a practical standpoint, aluminum is a poor choice, IMHO. The arm of a trebuchet tends to act somewhat like a spring. Aluminum will work-harden and develop stress cracks pretty quickly.

Regardless of the material, if you must have a hole through it, add reinforcements.
 
  • #5
If you have access to steel that is infinitely strong, I would definitely go with that material.
 
  • #6
So what metal should I use to keep the weight down but still hold strong?

I'm dropping a max of 50-60 lbs from 4 ft high. What material and dimensions should I use? Rectangular tubing or circular tubing?

Thanks
 
  • #7
Axecutioner said:
... I'm dropping a max of 50-60 lbs from 4 ft high. ...
That is a considerable mass to be using on a "lightweight" trebuchet. What is the maximum machine weight (less counterweight) you hope to achieve?

What is the throwing arm length? Can the machine be anchored to the ground during use?

Are you going to use it just a few times for a demonstration, or do you expect to use it repeatedly?

What construction methods are available to you? (Welding, machining, etc.)
 
  • #8
If you want to lighten the structure, choose a better Alum. alloy like 6061-T6 which has a yield strength of about 35ksi. This assumes creep won't be a factor. Add back in whatever safety factor you require.
 

1. What is the strength of aluminum tubing?

The strength of aluminum tubing varies depending on the type and grade of aluminum used. Generally, aluminum tubing has a tensile strength of 40,000 to 90,000 pounds per square inch (psi).

2. How does the strength of aluminum tubing compare to other materials?

Aluminum tubing has a lower strength-to-weight ratio compared to materials like steel and titanium. However, it is still a strong and lightweight material, making it suitable for a variety of applications.

3. What factors affect the strength of aluminum tubing?

The strength of aluminum tubing can be affected by several factors, including the alloy composition, heat treatment, and the manufacturing process. The thickness and diameter of the tubing can also impact its strength.

4. Can aluminum tubing be strengthened or reinforced?

Yes, aluminum tubing can be strengthened through processes like cold working, heat treatment, and alloying. Reinforcements, such as additional layers or coatings, can also be added to increase the strength of aluminum tubing.

5. What are the common applications of aluminum tubing in engineering?

Aluminum tubing is commonly used in engineering for applications such as structural support, fluid and gas transport, and heat transfer. It is also used in industries such as aerospace, automotive, and construction due to its strength, lightweight, and corrosion resistance.

Similar threads

Replies
19
Views
339
  • Materials and Chemical Engineering
Replies
2
Views
7K
  • General Engineering
Replies
3
Views
3K
  • Mechanical Engineering
Replies
4
Views
964
Replies
3
Views
1K
  • Materials and Chemical Engineering
Replies
4
Views
4K
Replies
3
Views
3K
  • Mechanical Engineering
Replies
3
Views
2K
  • Mechanical Engineering
Replies
11
Views
5K
Replies
16
Views
2K
Back
Top