- 20,782
- 28,288
I still don't like the inaccuracy of "behaves like" because it doesn't capture lower terms quantitatively. We have ##\dfrac{1}{x^n}<\dfrac{1}{x^{n-1}}##, so why can we neglect those terms of lower orders? In other words: Why is ##g(x)=x^{-n}## suited, if ##f(x)=P(x)^{-1}## is actually bigger than ##g(x)?##archaic said:We have ##n\in\mathbb{N}=\{0,\,1,\,2,\,...\}## (just clarifying because I initially thought of ##\mathbb{N}## as not having ##0##).
Since all the zeroes of ##P(x)## are negative, and its domain is ##\mathbb{R}##, ##\frac{1}{P(x)}## is well defined for ##x\geq0##.
Moreover, the sign of ##\frac{1}{P(x)}## is constant for ##x\geq r_0##, where ##r_0## is the biggest zero of ##P(x)##, and is the same as ##P(x)##'s. As such, it is positive because ##P(x)\underset{\infty}{\sim}x^n## and ##x^n\geq0## when ##x\to+\infty##.
The integral ##\int_1^\infty\frac{dx}{P(x)}## exhibits an improper behaviour only at ##\infty## because of what is stated above about the zeroes of ##P(x)##. I will use this test for improper integrals'convergence:
If ##f## and ##g## are two (piecewisely) continuous and positive real functions on ##[a,\,b)##, where ##a\in\mathbb{R}## and ##b## the same or is infinity, then, if ##f(x)\underset{b}{\sim}g(x)##, then ##\int_a^bf(x)\,dx## converges ##\Leftrightarrow\int_a^bg(x)\,dx## converges.
$$\lim_{x\to\infty}\frac{\frac{1}{P(x)}}{\frac{1}{x^n}}=\lim_{x\to\infty}\frac{x^n}{P(x)}=\lim_{x\to\infty}\frac{x^n}{x^n\left(1+\frac{a_{n-1}}{x}+\frac{a_{n-2}}{x^2}+...+\frac{a_0}{x^n}\right)}=1$$
$$\int_1^\infty\frac{dx}{x^n}\text{ converges }\Leftrightarrow n>1\text{, by p-test}$$
Using the theorem stated above, ##\int_1^\infty\frac{dx}{P(x)}## converges if and only if ##n>1##, or ##n\geq2##.
There should be chosen a better function ##g(x)##, which is actually greater than ##x^{-n}## and not only "near", and the estimation ##\int 1/P(x) dx < \int g(x)dx## should be accurate.
Your argument goes: "I have a function (##x^{-n}##), which is possibly smaller than ##1/P(x)##, so it cannot guarantee convergence, but I don't care, since my error is small." However, you did not show that this heuristic is allowed.
Last edited:
