Infrared
Science Advisor
Gold Member
- 1,084
- 658
Adesh said:I can give an informal proof of why an invertible function would be monotonic.
PROOF: Function is invertible implies it is injective, that is it passes horizontal line test for all horizontal lines. That is our function passes every horizontal line just once and this is possible only if it keeps on increasing/decreasing, if it were to change it’s nature, that is from increasing to decreasing (or decreasing to increasing) it would surely intersect at least one horizontal line at least twice and hence will not be injective
The claim "an invertible function would be monotonic" is false. A counterexample is ##f:[0,1]\to [0,1]## defined by ##f(x)=x## for ##x\in (0,1)## and ##f(0)=1, f(1)=0##. Continuity is necessary. You don't mention continuity anywhere in your explanation, so I don't think it can be right.
A bit wordy. I think it's fine to just say "##f## is invertible because ##f\circ f## is an inverse function to ##f##."Adesh said:Was my proof of “##f## is invertible” right?