You must have nightmares with BCH! I don't see a mistake, although I haven't checked the details of your last recursion which led to ##5.01##.
The proof I have is essentially the same, only a bit lazier with the commutators and the estimation. I add it here, for the sake of completeness - and because it is not really different.
For a vector ##\alpha \in \{\,0,1\,\}^n## we define
$$
S(\alpha) := \prod_{k=1}^n A^{1-\alpha_k}B^{\alpha_k}
$$
Each of these vectors can be sorted in an ascending order in ##n^2## steps, e.g. with Bubble sort, until ##S(\alpha_{Sort})=A^{n-|\alpha|}B^{|\alpha|}## where every commutation between ##A,B## results in an additional term ##[A,B]=AB-BA\,:##
$$
S(BA)-S(AB) = BA - AB = -[A,B]
$$
or with an example which needs more steps:
\begin{align*}
\begin{bmatrix}\alpha_0=(1,0,1,0)\\S(\alpha_0)=BABA \end{bmatrix} &\longrightarrow \begin{bmatrix}\alpha_1=(0,1,1,0)\\S(\alpha_1)=ABBA \end{bmatrix} \\
S(\alpha_0)-S(\alpha_1)&=(BA-AB)BA=-[A,B]BA \\
\begin{bmatrix}\alpha_1=(0,1,1,0)\\S(\alpha_1)=ABBA \end{bmatrix} &\longrightarrow \begin{bmatrix}\alpha_2=(0,1,0,1)\\S(\alpha_2)=ABAB \end{bmatrix} \\
S(\alpha_1)-S(\alpha_2)&=AB(BA-AB)=-AB[A,B] \\
\begin{bmatrix}\alpha_2=(0,1,0,1)\\S(\alpha_2)=ABAB \end{bmatrix} &\longrightarrow \begin{bmatrix}\alpha_3=(0,0,1,1)\\S(\alpha_3)=AABB \end{bmatrix} \\
S(\alpha_2)-S(\alpha_3)&=A(BA-AB)B =-A[A,B]B
\end{align*}
So every sorting step produces a factor ##[A,B]##, which combined with the assumption ##\|A\|,\|B\|\leq 1## means ##\|S(\alpha_k)-S(\alpha_{k+1})\| \leq \left\|\,[A,B]\,\right\|## and
$$
\|S(\alpha)-S(\alpha_{Sort})\| \leq \sum_{k=0}^{n^2-1} \|S(\alpha_k)-S(\alpha_{k+1})\| \leq n^2\cdot \|\,[A,B]\,\|
$$
\begin{align*}
e^{A+B} &= \sum_{n=0}^\infty \dfrac{1}{n!} (A+B)^n=\sum_{n=0}^\infty \dfrac{1}{n!} \sum_{\alpha\in \{0,1\}^n} S(\alpha)\\
e^A\cdot e^B&= \left(\sum_{n=0}^\infty \dfrac{A^n}{n!}\right)\cdot\left(\sum_{n=0}^\infty \dfrac{B^n}{n!}\right)= \sum_{n=0}^\infty \sum_{k=0}^n \dfrac{A^{n-k}}{(n-k)!}\cdot \dfrac{B^k}{k!}\\
&=\sum_{n=0}^\infty \dfrac{1}{n!} \sum_{k=0}^n \binom{n}{k}A^{n-k}B^k = \sum_{n=0}^\infty \dfrac{1}{n!} \sum_{\alpha\in \{0,1\}^n} A^{n-|\alpha|}B^{|\alpha|}\\
&= \sum_{n=0}^\infty \dfrac{1}{n!} \sum_{\alpha\in \{0,1\}^n} S(\alpha_{Sort})
\end{align*}
With these equations we get
\begin{align*}
\|\;e^{A+B}-e^A \cdot e^B\;\| &\leq \sum_{n=0}^\infty \dfrac{1}{n!} \sum_{\alpha\in \{0,1\}^n} \|\;S(\alpha)-S(\alpha_{Sort})\;\|\\
& \leq \sum_{n=0}^\infty \dfrac{2^n}{n!} \cdot n^2\cdot \|\,[A,B]\,\|\\
&= 6e^2 \cdot \|\,[A,B]\,\|
\end{align*}