You can differentiate ##x \longmapsto \tan(x)=\dfrac{\sin(x)}{\cos(x)}## and use it to differentiate ##x\longmapsto x=(\tan \circ \operatorname{arctan})(x).## This would be a proof by differentiation instead of a direct integration. For a direct integration I'd try to do it with a Weierstraß substitution:
https://en.wikipedia.org/wiki/Weierstrass_substitution
This depends on what you take for granted. E.g. if you know the graph of the tangent function then you automatically have the graph of the inverse function by reflection at the diagonal ##y=x##. Another possibility is to use approximation formulas like
$$
\operatorname{arctan} x \approx \begin{cases}
\dfrac{x}{1+0.28x^2} &\text{ if } |x|\leq 1\\
\dfrac{\pi}{2}-\dfrac{x}{x^2+0.28}&\text{ if }x>1\\
-\dfrac{\pi}{2}-\dfrac{x}{x^2+0.28}&\text{ if }x<-1
\end{cases}
$$