Challenge Math Challenge - October 2019

Click For Summary
The Math Challenge from October 2019 features a variety of mathematical problems, many of which have been solved by participants. Key topics include proving inequalities related to convex functions, exploring properties of matrices, and calculating probabilities involving random selections. Several discussions focus on the convergence of series and properties of topological groups, highlighting the depth of mathematical concepts covered. Additionally, there are practical applications, such as calculating celestial masses and analyzing sound frequency changes. The thread showcases a collaborative effort to tackle complex mathematical challenges.
  • #31
fresh_42 said:
No. And the question asks for the acoustic(!) interval, which is a ratio, not a difference. There is no way to deduce an initial condition to calculate the absolute frequencies.

In that case would the factor instead be$$\frac{f_{2}}{f_{1}} = \frac{c-v}{c+v} = \frac{8}{9}$$which corresponds to a decrease by a major second as per the harmonic series?
 
Physics news on Phys.org
  • #32
etotheipi said:
In that case would the factor instead be$$\frac{f_{2}}{f_{1}} = \frac{c-v}{c+v} = \frac{8}{9}$$which corresponds to a decrease by a major second as per the harmonic series?
Yes. It is ##\nu'= \dfrac{\nu}{1-\dfrac{v}{s}} ## versus ##\nu''= \dfrac{\nu}{1+\dfrac{v}{s}}##
 
  • #33
Number 15:
(1) & (2)
if (1) is wrong, then (2) must also be wrong, so (1) is correct.
(3) & (4)
since (1) told us that ##a## is rational, then ##a## can't be ##\sqrt13## or ##-\sqrt13##, so (4) is correct.

Now, if (6) is correct, ##a## can be any even natural number divisible by ##7##, which is wrong.

if (5) is right otherwise, ##a## can only be ##7## or ##14##, but since (6) is wrong at the same time, ##a## can only be ##7##, which is the answer.
 
  • Like
Likes PeroK and Delta2
  • #34
I don't understand question 14. Are we asked to pick two points on the sphere and find the midpoint of the segment that connects them?
 
  • #35
archaic said:
I don't understand question 14. Are we asked to pick two points on the sphere and find the midpoint of the segment that connects them?
Yes and no. Yes, as this is part of the question, and no, since this procedure has to be done with any second point. We have a fixed single point ##P## and a set ##\mathbb{S}^2##. Then we consider all lines ##\overline{PQ}## from ##P## to ##Q## to another point ##Q## on the sphere. This line has a center ##M_Q##. The problem asks for ##\{\,M_Q\in \overline{PQ}\,|\,Q\in \mathbb{S}^2\,\}\,.##
 
  • #36
fresh_42 said:
Yes and no. Yes, as this is part of the question, and no, since this procedure has to be done with any second point. We have a fixed single point ##P## and a set ##\mathbb{S}^2##. Then we consider all lines ##\overline{PQ}## from ##P## to ##Q## to another point ##Q## on the sphere. This line has a center ##M_Q##. The problem asks for ##\{\,M_Q\in \overline{PQ}\,|\,Q\in \mathbb{S}^2\,\}\,.##
Like this?
Supposing that ##P=(x,y,z)##, the set of all midpoints between ##P## and ##Q## by varying ##Q## would be ##\{(\frac{x+x_Q}{2},\frac{y+y_Q}{2},\frac{z+z_Q}{2})|(x_Q,y_Q,z_Q)\in\mathbb{S}^2\}##.
 
  • #37
archaic said:
Like this?
Supposing that ##P=(x,y,z)##, the set of all midpoints between ##P## and ##Q## by varying ##Q## would be ##\{(\frac{x+x_Q}{2},\frac{y+y_Q}{2},\frac{z+z_Q}{2})|(x_Q,y_Q,z_Q)\in\mathbb{S}^2\}##.
Yes, but which equation describes those points? What is it what you have written down?
 
  • #38
Question 14
Isn't this just a scaling of the original sphere? So this would be a sphere at point P whose slope at P is tangent to the original sphere and has radius half of the original sphere.

Okay so I thought about an equation but for the love of me I cannot seem to translate the sphere into the correct position to be a tangent to P.
 
Last edited:
  • #39
lekh2003 said:
Question 14
Isn't this just a scaling of the original sphere? So this would be a sphere at point P whose slope at P is tangent to the original sphere and has radius half of the original sphere.

Okay so I thought about an equation but for the love of me I cannot seem to translate the sphere into the correct position to be a tangent to P.
Well, it's not a scaling anymore if the center is shifted. Your description is right, as is the set which @archaic defined. What I wanted to see is a simple transformation from one description to the other one. As you both have basically solved it, let me give the solution I had in mind. (Please note the two directions! The centers are on the smaller ball, and all points of the smaller ball are indeed a center of some chord!)

The variable endpoint ##X## of the chord is on the sphere, so for its position vector we have ##\vec{x}^2=r^2##. The position vector of the center of the chord ##\overline{PX}## is thus
$$
\vec{c}=\dfrac{\vec{p}+\vec{x}}{2} \;\Longleftrightarrow \; \vec{x}=2\vec{c}-\vec{p}
$$
hence ##r^2=(2\vec{c}-\vec{p})^2## or ##\left( \vec{c}-\dfrac{\vec{p}}{2} \right)^2=\dfrac{r^2}{4}##.

So the set of points we were looking for are all on a sphere with center ##\overline{OP}/2=\vec{p}/2## and radius ##r/2##. All points of this sphere are on the other hand a center of some chord of the original sphere with endpoint ##P##, since we can go back. The point ##P## itself is the center of the chord ##\overline{PP}##.
 
  • #40
@fresh_42 ahh, thanks for the explanation, that makes sense.
 
  • #41
4 challenge problems left, who can solve them?

New ones on Friday!
 
  • #42
Greg Bernhardt said:
4 challenge problems left, who can solve them?

New ones on Friday!
I would try, but i don't fancy speed learning topology right now :P
 
  • #43
fresh_42 said:
5. Let ##A=\sum_{k=0}^\infty a_k\, , \,B=\sum_{k=0}^\infty b_k## be two convergent series one of which absolutely.
Prove: The Cauchy-product ##C=\sum_{k=0}^\infty c_k## with ##c_k=\sum_{j=0}^ka_jb_{k-j}## converges to ##AB##.
Give an example that absolute convergence of at least one factor is necessary.
This is The Theorem of Mertens, Knopp, Theory and Applications of Infinite Series, pg 321, 188.
An example when absolute convergence of at least one factor is necessary is the other challenge problem I just did, the Cauchy product ##\left(\sum_{n=0}^\infty \frac{(-1)^n}{\sqrt{n+1}}\right) ^2##.
 

Similar threads

  • · Replies 61 ·
3
Replies
61
Views
10K
  • · Replies 61 ·
3
Replies
61
Views
11K
  • · Replies 114 ·
4
Replies
114
Views
11K
  • · Replies 60 ·
3
Replies
60
Views
12K
  • · Replies 86 ·
3
Replies
86
Views
13K
  • · Replies 61 ·
3
Replies
61
Views
12K
  • · Replies 42 ·
2
Replies
42
Views
10K
  • · Replies 64 ·
3
Replies
64
Views
15K
  • · Replies 33 ·
2
Replies
33
Views
9K
  • · Replies 100 ·
4
Replies
100
Views
11K