klarka
- 2
- 0
Homework Statement
Prove that \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\geq\sqrt{n} for all n \in N
Homework Equations
The Attempt at a Solution
p(1): \frac{1}{\sqrt{1}} = \frac{1}{1} = 1 = \sqrt{1} \geq \sqrt{1}
Let \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} +...+ \frac{1}{\sqrt{n}} \geq \sqrt{n} for some n\in N
1/√1 + 1/√2 + ... + 1/√(n+1) > √n + 1/√(n+1)
= (√n√(n+1) + 1)/√(n+1)
=(√n(n+1) + 1)/√(n+1)