Matrices and eigenvalues. A comment in my answer.

sphlanx
Messages
11
Reaction score
0

Homework Statement



Hello and thanks again to anyone who has replied my posts. Your help is a great deal and really appreciated.

I have the following homework question which I have answered and I want a comment if it is valid or illogical:

We are given a matrix, with eigenvalues 3 and 7 respectively.

We are asked to say if there other matrices with the same eigenvalues and if the set containing all these matrices is finite.



Homework Equations


the matrix given:

2 1
-5 8

The Attempt at a Solution



I have thought of the following answer: My point is that there are infinite matrix with the same eigenvalues that have different eigenvectors. So I say that the linear system:

A(x1,y1)=λ1(x1,y1)
A(x2,y2)=λ2(x2,y2)

where A is a 2x2, has infinite solutions IF we take a11,a12,a21,a22(the elements of the matrix) as the variables of the linear system. The solutions will have x1,y1 and x2,y2 as constant parameters.

Have i got something terribly wrong?
 
Last edited:
Physics news on Phys.org
No, that's perfectly correct.

Another way to prove that is to note that the matrix
\begin{bmatrix}3 & a \\ 0 & 7\end{bmatrix}
has eigenvalues 3 and 7 for any a.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top