Matrix Math Problems: [1 2 3; 2 3 4; 3 4 5] ||[3 4; 3 4]

  • Thread starter Thread starter dangish
  • Start date Start date
  • Tags Tags
    Matrix
dangish
Messages
72
Reaction score
0
\left[1 2 3<br /> 2 3 4<br /> 3 4 5\right]
\left3 4<br /> 3 4\right\|\|
 
Physics news on Phys.org


The answer is 42.
 


I can't figure out how to post matricies lol
 


\left[2 1 2\right]
\left[1 2 3\right]
 


Use the bmatrix command, like this:

\begin{bmatrix}<br /> 2&amp; 1&amp; 2 \\<br /> 1&amp; 2&amp; 3<br /> \end{bmatrix}

(Click on the matrix and you can see the code I used.)
 


[ tex]\begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} [ /tex]

Just remove the leading spaces in the tex and /tex tags.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top