Matrix of angular momentum operator

TURK
Messages
14
Reaction score
0
as known to all, we can find a matrix representation for every operator in quantum mechanics.

for example for total angular momentum of one particle j(square) the elements are j(j+1)(square)h(bar) δmm'

However I have stucked in two particle systems.

for example I could not find the matrix of j1+j2- (this is a product) here j1+ is the raising operator for first particle and j2- is the lowering operator for second one.
normally for one particle raising angular momentum operator gives the eigen value (squareroot)[j(j+1)-m(m+1)].
but in this case as far as i know, i have to find the matrix representration of product of this two operator. but for the below conditions I could not create a matrix.
lets say j1=2 j2=1 and the restriction is m= m1 +m2 = 2. that is m1 can take values 2,1 and coresponding m2 values are 0 and 1.
can you help me about this?
 
Physics news on Phys.org
You must first write down your basis states, e.g. you can take the product states

|1> = |j1=2, m1=2>|j2=1,m2=0>

|2> = |j1=2, m1=1>|j2=1,m2=1>

If we put A = J1^{+} J2^{-}, then the matrix elements are

A_{i,j} = <i|A|j>

e.g.

A_{1,2} =

<|j1=2, m1=2|<j2=1,m2=0|J1^{+} J2^{-}
|j1=2, m1=1>|j2=1,m2=1>

We have:

J1^{+} J2^{-}|j1=2, m1=1>|j2=1,m2=1> =

(J1^{+} |j1=2, m1=1>) (J2^{-}|j2=1,m2=1>) =

2sqrt(2)h-bar^2|j1=2, m1=2>|j2=1, m2=0>

And we see that A_{1,2} = 2sqrt(2)h-bar^2
 
is that a diagonal matrix or an off diagonal matrix.
you took the state 1 and state 2 to form the matrix of the operator A and after you applied the operators to the state of 2 you got the state of 1 then the kronecker delta gave you what? a diagonal matrix or what?

thanks by the way for your answer.
 
or could you just write the elemts of this 2x2 matrix.
thanks alot.
 
ah okey just understood
thnaks very much for your kindness.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
3
Views
1K
Replies
1
Views
423
Replies
11
Views
2K
Replies
1
Views
958
Replies
1
Views
1K
Replies
27
Views
3K
Back
Top