Mathman23 said:
Hi
I got a question regarding the matrix of linear transformation.
A linear transformation L which maps \mathbb{R}^{3} \rightarrow \mathbb{R}^2 implies that L(2,-1,-1) = (0,0) and L(-1,2,1) = (1,3) and L(2,2,1) = (4,9).
My question is: The matrix of linear transformation is that then?
<br />
\left[\begin{array}{ccc}<br />
0 & 1 & 4\\<br />
0 & 3 & 9\\<br />
\end{array}\right]<br />
Sincerely
Fred
SOLUTION HINTS:
To obtain the Linear Transformation "L" for which:
a) L(2,-1,-1) = (0,0)
b) L(-1,2,1) = (1,3)
c) L(2,2,1) = (4,9)
the following simultaneous system of 6 equations in 6 unknowns (grouped to correspond to conditions "a", "b", and "c" above) must be solved:
1: \ \ \ \ <br />
\begin{array}{rrrrr}<br />
\hline<br />
(2)L_{1,1} \ + & (-1)L_{1,2} \ + & (-1)L_{1,3} & = & 0 \\<br />
(2)L_{2,1} \ + & (-1)L_{2,2} \ + & (-1)L_{2,3} & = & 0 \\<br />
\hline<br />
(-1)L_{1,1} \ + & (2)L_{1,2} \ + & (1)L_{1,3} & = & 1 \\<br />
(-1)L_{2,1} \ + & (2)L_{2,2} \ + & (1)L_{2,3} & = & 3 \\<br />
\hline<br />
(2)L_{1,1} \ + & (2)L_{1,2} \ + & (1)L_{1,3} & = & 4 \\<br />
(2)L_{2,1} \ + & (2)L_{2,2} \ + & (1)L_{2,3} & = & 9 \\<br />
\hline<br />
\end{array}<br />
The Linear Transformation "L" would then be represented by the following matrix:
2: \ \ \ \ \ \ \mathsf{L} \ \ = \ \ \left [<br />
\begin{array}{ccc}<br />
L_{1,1} & L_{1,2} & L_{1,3} \\<br />
L_{2,1} & L_{2,2} & L_{2,3} \\<br />
\end{array} \right ] <br />
Equation System #1 above consists of 6 equations in 6 unknowns. The first step towards its solution is formation of the 6x6 coefficient matrix "M":
3: \ \ \ \ \ M \ \ = \ \ \left [<br />
\begin{array}{rrrrrr}<br />
2 & -1 & -1 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 2 & -1 & -1 \\<br />
-1 & 2 & 1 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & -1 & 2 & 1 \\<br />
2 & 2 & 1 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 2 & 2 & 1 \\<br />
\end{array} \right ] <br />
such that:
4: \ \ \ \ \ \ \ \ \left [<br />
\begin{array}{rrrrrr}<br />
2 & -1 & -1 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 2 & -1 & -1 \\<br />
-1 & 2 & 1 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & -1 & 2 & 1 \\<br />
2 & 2 & 1 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 2 & 2 & 1 \\<br />
\end{array} \right ] <br />
\left [<br />
\begin{array}{c}<br />
L_{1,1} \\<br />
L_{1,2} \\<br />
L_{1,3} \\<br />
L_{2,1} \\<br />
L_{2,2} \\<br />
L_{2,3} \\<br />
\end{array} \right ] \ \ = \ \ \left [<br />
\begin{array}{c}<br />
0 \\<br />
0 \\<br />
1 \\<br />
3 \\<br />
4 \\<br />
9 \\<br />
\end{array} \right ]<br />
Solve for "L" by determining M
(-1).
(Hint #1: The latter inverse exists if det(M) ≠ 0).
(Hint #2: det(M) = -9)
(Hint #3: L = [ 1 0 2 ; 2 1 3 ] )
~~