Max Packing Fraction of Hexagonal Unit Cell Volume w/ Hard Spheres

AI Thread Summary
The discussion focuses on calculating the maximum packing fraction of hard spheres in a hexagonal unit cell. The maximum packing occurs when the height of the cell equals the side length, allowing spheres to touch. It is established that one primitive cell contains one lattice point, and a hexagonal unit cell comprises three primitive cells, resulting in three lattice points. The participant seeks confirmation on this approach to determine the number of lattice points. The conversation emphasizes understanding the geometric relationships within the hexagonal structure for accurate calculations.
malawi_glenn
Science Advisor
Messages
6,735
Reaction score
2,431

Homework Statement



Calculate the maximum packing fraction of the unit cell volume that can be filled by hard spheres in the Hexagonal structure

Relevant eq: Volume of spheres is number of lattice points multiplied with the maximum volume of one sphere.

The Attempt at a Solution



I know maxium is obtained when c = a i.e when height of the cell is as high as one of the sides in the hexagon. Hence, maximum sphere radius is a/2 (I have shown geometrically that the spheres can touch each other).

Now I am to determine the number of lattice points in this structure, I know that one primitive cell contains totally one lattice point, and a unit cell of a hexagonal structure can be made up by exactly three primitve cells, so the number of lattice points is 3. Is that the correct way to do this?

The rest I can figure out by my self, just are unsure how to determine the number of lattice points.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top