Maximize Your Swinging Ball Force with These Expert Tips

Click For Summary

Homework Help Overview

The discussion revolves around the dynamics of a ball swinging on a string, particularly focusing on the forces acting on the ball when it reaches the top of its vertical circular path. Participants explore the relationship between tension, velocity, and gravitational force in this context.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the conditions under which tension in the string can vary, depending on the velocity of the ball at the top of the swing. There are questions regarding the definition of variables, particularly the weight of the ball, and the implications of different velocities on tension.

Discussion Status

There is an ongoing exploration of the mathematical relationships involved, with some participants providing corrections and clarifications on previous statements. The discussion reflects a mix of interpretations and attempts to refine the understanding of the problem without reaching a definitive conclusion.

Contextual Notes

Some participants note the lack of definitions for certain variables, such as the weight of the ball, which is assumed but not explicitly stated. There are also mentions of potential errors in the mathematical expressions used, indicating a need for careful consideration of physical dimensions and relationships.

ritzcrackers
Messages
1
Reaction score
0
New poster is reminded to always show their work when starting schoolwork threads
Homework Statement
If you swing a ball on a string in a vertical circle, on the top of the circle can the force of tension ever be less than the weight force or will it always be greater? how about at the bottom of the circular path?
Relevant Equations
f=ma
idk
 
Physics news on Phys.org
"Swing a ball on a string" can mean a variety of things. Perhaps you should be more specific. The string tension can be any positive value, depending.
 
Given that it does a perfect vertical circle in the top point you ll have $$\sum F=m\frac{v^2}{R} \Rightarrow T+B\geq 0 \Rightarrow T\geq -B$$ which simply means (since i take the positive direction pointing down and the force of tension points down in the upper point) that the force of tension can be anything and it depends on velocity. It will be zero if at the top point the mass has zero velocity, it will be infinite if it has infinite velocity or some in between value. It all depends on the velocity at the top point. In order to be greater than the weight it has to hold that $$m\frac{v^2}{R}-B\geq B\Rightarrow v\geq\sqrt{\frac{2BR}{m}}\geq \sqrt{2Rg}$$
 
Last edited:
Delta2 said:
Given that it does a perfect vertical circle in the top point you ll have $$\sum F=m\frac{v^2}{R} \rightarrow T+B\geq 0 \rightarrow T\geq -B$$ which simply means (since i take the positive direction pointing down and the force of tension points down in the upper point) that the force of tension can be anything and it depends on velocity. It will be zero if at the top point the mass has zero velocity, it will be infinite if it has infinite velocity or some in between value. It all depends on the velocity at the top point. In order to be greater than the weight it has to hold that $$m\frac{v^2}{R}-B\geq B\Rightarrow v\geq\sqrt{\frac{2BR}{m}}\geq 2Rg$$
You have not defined ##B##, assuming that it is the ball weight, but should be stated.

The last step should be an equality (although not technically wrong) and is missing a square root (physical dimensions don’t match).
 
Orodruin said:
You have not defined ##B##, assuming that it is the ball weight, but should be stated.

The last step should be an equality (although not technically wrong) and is missing a square root (physical dimensions don’t match).
Ok right I fixed the square root. Thanks for the correction.

Have to do another correction to myself, the force of tension is zero if the velocity is $$v=\sqrt{Rg}$$ (not if the velocity is zero).
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 10 ·
Replies
10
Views
2K