Maximum and Range of the Equation (Calc.)

  • Thread starter Thread starter Calam1tous
  • Start date Start date
  • Tags Tags
    Maximum Range
AI Thread Summary
The discussion focuses on finding the maximum range of the equation y = (u^2 / g) * sin(2x) using calculus. The user initially struggled with differentiation but received guidance to treat u and g as constants, simplifying the problem. By differentiating sin(2x) and setting the derivative to zero, they determined that the critical point occurs at x = 45 degrees. This angle corresponds to the maximum range, confirming that the maximum range is achieved when theta is 45 degrees. The solution highlights the importance of correctly applying differentiation techniques in calculus to solve physics problems.
Calam1tous
Messages
6
Reaction score
0

Homework Statement



Hello,

I ran into this problem in the middle of my physics homework:

Using calculus, you can find a function’s maximum or minimum by differentiating and setting the result to zero. Do this for equation y = (u^2 / g)*sin(2x), differentiating with respect to x, and thus find the maximum range for x.

u = initial velocity
g= acceleration of gravity
x = theta

Homework Equations



Possibly x = ut for range?

The Attempt at a Solution



It's been a several months since I've done this type of problem, but I tried to differentiate it through the quotient rule (and product rule) and got:

(2*g*u^2*cos(2x) + 2*g*u*sin(2x) - u^2*sin(2x)) / g^2

I tried to set this to zero in order to find the maximum:

0 = (2*g*u^2*cos(2x) + 2*g*u*sin(2x) - u^2*sin(2x)) / g^2

but I couldn't figure out what to do and I had a suspicion I was doing everything wrong.

Can anyone point out my mistakes / what to do next?
Thanks!
 
Last edited:
Physics news on Phys.org
It would appear that u and g are constants, so that (u2/g) is also a constant. So you only have to worry about differentiating the sin(2x).

What's the derivative of sin(2x) with respect to x?
 
Thanks for the input, treating the u and g variables as constants made the problem make more sense and I was able to solve it.

y = range
x = theta

Solution (for reference):

If I ignore the other variables and differentiate the equation, y = sin(2x), I get:

y' = 2cos(2x)

Then set it to 0 to find the critical point:

0 = 2cos(2x)

Divide by 2:

0 = cos(2x)

Take the inverse cosine of both sides:

cos^-1(0) = 2x

Divide both sides by 2:

90 / 2 = x

45 degrees = x

Therefore the maximum range given by x (theta) is 45.
 
That gives the value of x that makes y a maximum.

The question asks for the maximum range, which is the y value when x = 45 degrees.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top