Maximizing Volume: Rectangular Box Inscribed in an Ellipsoid

  • Thread starter Thread starter Dissonance in E
  • Start date Start date
  • Tags Tags
    Maximum Value
Dissonance in E
Messages
71
Reaction score
0

Homework Statement


Find the volume of the largest rectangular box with faces parallel to the coordinate planes that can be inscribed inside the ellipsoid :

(x^2/a^2)+(y^2/b^2)+(z^2/c^2) = 1


Homework Equations



Volume of a rectangular box = x * y * z
critical point formula.

The Attempt at a Solution



The volume of a box is maximised when x = y = z ?
 
Physics news on Phys.org
Not quite. Try rewriting x in terms of y and z and plugging this into your volume formula. This must hold since x is determined by y and z (i.e. the vertices of the rectangular box will lie on the ellipsoid.)

Now, how do you find the maximum of a function of one variable? How do you find the maximum of a function of two variables?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top