Petar Mali
- 283
- 0
\hat{N}=\{\vec{E},\vec{D}\}+\{\vec{H},\vec{B}\}-\frac{1}{2}(\vec{D}\cdot\vec{E}+\vec{B}\cdot\vec{H})\hat{1}
\hat{1} - unit tensor
If I look \{\vec{E},\vec{D}\}. I know that
\{\vec{E},\vec{D}\}=\{\vec{D},\vec{E}\}^*
But when I can say that
\{\vec{E},\vec{D}\}=\{\vec{D},\vec{E}\}?
and when can I say that
\{\vec{H},\vec{B}\}=\{\vec{B},\vec{H}\}?
Thanks for your answer.
Just to remind you
definition
\{\vec{A},\vec{B}\}\cdot \vec{C}=\vec{A}(\vec{B}\cdot \vec{C})
\vec{C}\cdot \{\vec{A},\vec{B}\}=(\vec{C}\cdot\vec{A})\vec{B}
\hat{1} - unit tensor
If I look \{\vec{E},\vec{D}\}. I know that
\{\vec{E},\vec{D}\}=\{\vec{D},\vec{E}\}^*
But when I can say that
\{\vec{E},\vec{D}\}=\{\vec{D},\vec{E}\}?
and when can I say that
\{\vec{H},\vec{B}\}=\{\vec{B},\vec{H}\}?
Thanks for your answer.
Just to remind you
definition
\{\vec{A},\vec{B}\}\cdot \vec{C}=\vec{A}(\vec{B}\cdot \vec{C})
\vec{C}\cdot \{\vec{A},\vec{B}\}=(\vec{C}\cdot\vec{A})\vec{B}