Mechanics Problem: Finding Displacement, Velocity, and Acceleration Formulas

  • Thread starter Thread starter lavalamp
  • Start date Start date
  • Tags Tags
    Mechanics
AI Thread Summary
The discussion revolves around solving a mechanics problem involving an idealized car with specific power, mass, and drag force. The user seeks formulas for displacement, velocity, and acceleration as functions of time, starting from rest. Initial attempts led to incorrect equations due to misapplication of integration techniques and misunderstanding of differential equations. Suggestions include simplifying the problem or using numerical methods like the Runge-Kutta method for a more accurate solution. The complexity of non-linear ordinary differential equations is acknowledged, highlighting the challenges in deriving the desired formulas.
lavalamp
Messages
278
Reaction score
1

Homework Statement



Hey all, this isn't actually a homework question, but I guess it's of that type. For some time now I've had this (not entirely realistic) mechanics problem that I keep leaving for a while, and then coming back to. Basically, I'm not getting anywhere so I am asking for some help with it. Ideally I'd like to find formulae for s, v and a in terms of time, and I'd appreciate any help people can offer.

It's an idealised car with power 100 kW, mass 1000 kg, and a seemingly infinite amount of grip. There is also an aerodynamic drag force which I've set at -0.5v^2. The car begins accelerating from rest at t=0 and I'd like to find it's displacement, velocity and acceleration at a given time.

Homework Equations



I can get a formula for acceleration in terms of velocity relatively easily:

P = Tv
T = P/v

F = ma
T + Fd = ma
P/v - 0.5v2 = ma
100000/v - 0.5v2 = 1000a
200000/v - v2 = 2000a

a = (200000/v - v2)/2000

a = \frac{100}{v} - \frac{v^{2}}{2000}

The question is, what comes next?

The Attempt at a Solution



Here are two equations I arrive at when I attempt to progress a little further, I'm fairly confident that they are both incorrect:

v^{3} = \frac{600000s}{3s + 2000}

s^{3}\ +\ 3000s^{2}\ +\ hs\ =\ 200000t^{3}\ +\ 6000000*5^{1/3}t^{2}\ +\ 20*5^{2/3}ht

c, e, f and h are constants. I actually couldn't eliminate h.

Here's how I came up with the first equation:

a = 100/v - v2/2000
2000a = 200000/v - v2
2000va = 200000 - v3

2000v\ \frac{dv}{ds}\frac{ds}{dt} = 200000 - v^{3}

2000v^{2}\ \frac{dv}{ds} = 200000 - v^{3}

\int 2000v^{2}\ dv = \int 200000 - v^{3}\ ds

\frac{2000v^{3}}{3} = 200000s - v^{3}s + c

v^{3}s + \frac{2000v^{3}}{3} = 200000s + c

3v3s + 2000v3 = 600000s + c

v3(3s + 2000) = 600000s + c

v^{3} = \frac{600000s + c}{3s + 2000}

When t=0, s=0 and v=0, therefore c=0.

v^{3} = \frac{600000s}{3s + 2000}

And the second one:

Calculating the maximum velocity of the car (used later):

P = Tv
P = 0.5v2 * v
P = 0.5v3
200000 = v3
v = \sqrt[3]{200000} ~= 58.48 m/s

a = 100/v - v2/2000
2000a = 200000/v - v2
2000va = 200000 - v3

2000v dv/dt = 200000 - v3

\int 2000v\ dv = \int 200000 - v^{3}\ dt

1000v2 = 200000t + c - d3s/dt2

\int \int 1000v^{2}\ d^{2}t = \int \int 200000t + c \ d^{2}t - \int \int \int d^{3}s

\int \int 1000\ \frac{d^{2}s}{dt^{2}}\ d^{2}t = 100000t^{3}/3 + ct^{2} + et + f - s^{3}/6

\int \int 1000\ d^{2}s = 100000t^{3}/3 + ct^{2} + et + f - s^{3}/6

500s2 + hs = 100000t3/3 + ct2 + et + f - s3/6

s3/6 + 500s2 + hs = 100000t3/3 + ct2 + et + f

s3 + 3000s2 + hs = 200000t3 + ct2 + et + f

When t=0, s=0, therefore it's easy to spot right away that f=0.

When t is very large, v goes to cuberoot(200000) (max velocity calculated earlier), therefore s goes to cuberoot(200000)t. So setting s=cuberoot(200000)t

200000t3 + 3000*2000002/3t2 + 2000001/3th = 200000t3 + ct2 + et

6000000*51/3t2 + 20*52/3th = ct2 + et

c = 6000000*51/3
e = 20*52/3h

s3 + 3000s2 + hs = 200000t3 + 6000000*51/3t2 + 20*52/3ht
 
Physics news on Phys.org
Hi,

To get your first equation, the integral is done wrongly. v is treated as a constant in the integral when it is not.

The equation you are trying to solve is a second order non-linear differential equation. a is a second order differential of s and v is a first order differential of s.
 
Thanks for the reply. Yeah, for the integration in the first one I had a bad feeling about that as I was doing it, but I didn't, and don't, know what else to do there.

Do you have any suggestions about how I can um ... not do it wrong? I'm pretty much at the limit of what I know here, which is not very much.

For the second equation I spotted a mistake, so starting from here again:

\int \int 1000v^{2}\ d^{2}t = \int \int 200000t + c \ d^{2}t - \int \int \int d^{3}s

\int \int 1000\ \frac{d^{2}s}{dt^{2}}\ d^{2}t = 100000t^{3}/3 + ct^{2} + et + f - \int \int s\ +\ g\ d^{2}s

\int \int 1000\ d^{2}s + \int \int s\ +\ g\ d^{2}s = 100000t^{3}/3 + ct^{2} + et + f

\int \int s + 1000 + g\ d^{2}s = 100000t^{3}/3 + ct^{2} + et + f

s3/6 + 500s2 + gs2 + hs = 100000t3/3 + ct2 + et + f

s3 + 3000s2 + gs3 + hs = 200000t3 + ct2 + et + f

s3 + (3000+g)s2 + hs = 200000t3 + ct2 + et + f

And again, when t=0, s=0, therefore f=0.

s3 + (3000+g)s2 + hs = 200000t3 + ct2 + et

Replacing constants:
a = 3000 + g
b = h

s3 + as2 + bs = 200000t3 + ct2 + et

And the trick I pulled last time, setting s equal to the cuberoot of 200,000 multiplied by t, I don't think is valid. Which means I'm stuck with 4 constants I don't know how to find the values of.

However, I ran four simple simulations of this car and found 4 values for s and t, from which I used simultaneous equations to find:

a = 2229.30
b = -252.85
c = -3673.88
e = -454.72

I'm not sure what the accuracy of these values is, I'd have to guess not too great since I ran a fifth simulation and solved the simultaneous equations again to get somewhat different values:

a = 2229.10
b = -257.97
c = -3731.14
e = -464.78
 
Well... non-linear odes are hard to solve, I'm not proficient at it either, and scientists often use numerical methods to calculate whatever they need if they can't solve the ode. Maybe you could simplify your problem to a power one dependence of the velocity on the drag force, or you could look up some engineering books to see how they did it.

If you require a numerical solution, look up the Runge-Kutta method.

The first integral is done wrongly for your second equation. integrating v^3 with respect to t is not d3s/dt3. I see that you are attempting to solve the same integral as with the first equation.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top