Mechanics, Tangential force and potential of a curvilinear path

heycoa
Messages
73
Reaction score
0

Homework Statement



a) Prove that m (d^2s/dt^2) = Ftang, the tangential component of the net force on the bead. [hint] one way to do this is to take the time derivative of the equation v^2=v(dot)v. The left side should lead you to (d^2s/dt^2), and the right side should lead to Ftang.

b) One force on the bead is the normal force of the wire (which constrains the bead to stay on the wire). If we assume that all other forces (gravity, etc) are conservative, then their resultant can be derived from a potential energy U. Prove that Ftang= -(dU/ds). This shows that one-dimensional systems of this type can be treated just like linear systems, with x replaced by s and Fx by Ftang.

Homework Equations





The Attempt at a Solution



for problem a) I took v^2=v(dot)v and replaced v with (dx/dt)(x hat) + (dy/dt)(y hat), I then dotted the two together and got v^2= (d^2x/dt^2)+(d^2y/dt^2). Then I multiplied both sides of that equation by (d/dt). This lead to the equation equaling: (d^2s/dt^2)= sqrt((d^2x/dt^2)+(d^2y/dt^2)). Which makes sense. I then multiplied both sides by the mass and wound up with the correct term on the left side (m*(d^2s/dt^2)) and sqrt(m^2(d^2x/dt^2)+m^2(d^2y/dt^2)) on the right hand side. But I do not know if this is correct, I have no idea what the tangential force is supposed to look like.

For problem b) I am stuck and don't really know where to begin. I am calling the potential energy of this system m*g*y, where y is the height of the bead on the wire. I do not know where to go from here.

Please help me,
thank you for your time
 
Physics news on Phys.org
hi heycoa! :smile:

(try using the X2 button just above the Reply box :wink:)
heycoa said:
a) Prove that m (d^2s/dt^2) = Ftang, the tangential component of the net force on the bead. [hint] one way to do this is to take the time derivative of the equation v^2=v(dot)v. The left side should lead you to (d^2s/dt^2), and the right side should lead to Ftang.


for problem a) I took v^2=v(dot)v and replaced v with (dx/dt)(x hat) + (dy/dt)(y hat), I then dotted the two together and got v^2= (d^2x/dt^2)+(d^2y/dt^2). Then I multiplied both sides of that equation by (d/dt). This lead to the equation equaling: (d^2s/dt^2)= sqrt((d^2x/dt^2)+(d^2y/dt^2)). Which makes sense. I then multiplied both sides by the mass and wound up with the correct term on the left side (m*(d^2s/dt^2)) and sqrt(m^2(d^2x/dt^2)+m^2(d^2y/dt^2)) on the right hand side. But I do not know if this is correct, I have no idea what the tangential force is supposed to look like.

no, they want you do it quickly using vector equations, not using coordinates

hint: what is the relation between F and dv/dt ?

what is the relation between F and Ftang ? :wink:
 
Tiny-tim, thank you very much for the response.

When you say they want me to do it quickly using vector equations, are you saying that m*(d2s/dt2) =m*sqrt(d2x/dt2)+(d2x/dt2)) is incorrect? I'm not sure how else I can show what s'' equals.

I am thinking that the tangential force is equal to the force: m*s'' in the direction of the curved wire.
 
Last edited by a moderator:
what is the relation between F and dv/dt ?

what is the relation between F and Ftang ?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top