- #1
madbeemer
- 12
- 0
Metal in water thermal equilibrium?? Help
Determining temperature of an oven.
Guy puts a copper bar with a mass of 5.0 kg in the oven and puts an identical bar in a well-insulated 20.0 liter vessel containing 5.00 L of liquid water and the rest saturated steam at 760 mmHg. Waits until bars reach thermal equilibrium with their surroundings, then quickly takes the first bar out of the oven, removes the second bar from the vessel, drops the first bar in its place, covers the vessel tightly, waits for the system to come to equilibrium, and records the pressure gauge reading inside the vessel. It is 50.1 mmHg. Specific gravity of copper is 8.92. Specific internal energy of copper is given by U hat (kJ/kg) = 0.36*T(degrees celcius). to calculate oven temperature.
a) assume bar can transfer from oven to vessel without losing heat. What temperature is the oven? How many grams H2O evaporate?
b) bar actually lost 8.3 kJ of heat b/w oven and the vessel. Whatis the true oven temperature.
Determining temperature of an oven.
Guy puts a copper bar with a mass of 5.0 kg in the oven and puts an identical bar in a well-insulated 20.0 liter vessel containing 5.00 L of liquid water and the rest saturated steam at 760 mmHg. Waits until bars reach thermal equilibrium with their surroundings, then quickly takes the first bar out of the oven, removes the second bar from the vessel, drops the first bar in its place, covers the vessel tightly, waits for the system to come to equilibrium, and records the pressure gauge reading inside the vessel. It is 50.1 mmHg. Specific gravity of copper is 8.92. Specific internal energy of copper is given by U hat (kJ/kg) = 0.36*T(degrees celcius). to calculate oven temperature.
a) assume bar can transfer from oven to vessel without losing heat. What temperature is the oven? How many grams H2O evaporate?
b) bar actually lost 8.3 kJ of heat b/w oven and the vessel. Whatis the true oven temperature.