What Is the Mathematical Definition of the Microcanonical Partition Function?

Pacopag
Messages
193
Reaction score
4

Homework Statement


Does anyone know the mathematical definition of the microcanonical partition function?
I've seen
\Omega = {E_0\over{N!h^{3n}}}\int d^{3N}q d^{3N}p \delta(H - E)
where H=H(p,q) is the Hamiltonian. This looks like a useful definition.
Only thing is I don't know what E_0 is.

Homework Equations


The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
The microcanonical partition function is just a count of the number of states that satisfy extensive constraints on volume, energy, etc. The probability of each state is then trivially one over the partition function.
 
But in the case of a classical system the number of states is uncountable because the position and momenta are continuous.
 
In which case you can still calculate the phase space volume and the probability distribution is uniform over that volume --- it's the obvious generalisation.
 
Ok. Good. Now I see why my "hint" was to bring the constant energy surface in phase space into a sphere (because I know how to find the volume of a sphere).

Thank you very much genneth.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top