vabamyyr
- 65
- 0
I have matrix A
\left(\begin{array}{ccc}6&2&-2\\-2&2&2\\2&2&2\end{array} \right)
Its characteristic polynomial is
<br /> p(\lambda)=\lambda^3 - 10\lambda^2 + 32\lambda -32<br />
Finding minimal polynomial i get:
(I\lambda-A)^\vee=\left(\begin{array}{ccc}\lambda-6&-2&2\\2&\lambda-2&-2\\-2&-2&\lambda-2\end{array}\right)^\vee
I can't understand why this last result equals with
\left(\begin{array}{ccc}\lambda^2-4\lambda&-2\lambda+8&2\lambda-8\\2\lambda-8&\lambda^2-8\lambda+16&2\lambda-8\\-2\lambda+8&2\lambda-8&\lambda^2-8\lambda+16\end{array} \right)
can someone explain?
\left(\begin{array}{ccc}6&2&-2\\-2&2&2\\2&2&2\end{array} \right)
Its characteristic polynomial is
<br /> p(\lambda)=\lambda^3 - 10\lambda^2 + 32\lambda -32<br />
Finding minimal polynomial i get:
(I\lambda-A)^\vee=\left(\begin{array}{ccc}\lambda-6&-2&2\\2&\lambda-2&-2\\-2&-2&\lambda-2\end{array}\right)^\vee
I can't understand why this last result equals with
\left(\begin{array}{ccc}\lambda^2-4\lambda&-2\lambda+8&2\lambda-8\\2\lambda-8&\lambda^2-8\lambda+16&2\lambda-8\\-2\lambda+8&2\lambda-8&\lambda^2-8\lambda+16\end{array} \right)
can someone explain?
Last edited: