The Starship Enterprise (variable acceleration problem) part II

AI Thread Summary
The discussion centers on a mathematical error in solving a variable acceleration problem related to the Starship Enterprise. The user expresses frustration over a potential mistake made in their calculations, specifically regarding the integration of an exponential function. A key correction is provided, highlighting that the user incorrectly applied the exponential function's properties, leading to an erroneous conclusion. The correct approach involves evaluating the exponential function at the limits of integration and subtracting the results. The user acknowledges the mistake and expresses hope to avoid similar errors in the future.
frankR
Messages
91
Reaction score
0
Okay what am I doing wrong? This is the way I've been doing math for the last two years. This is annoying me. Unless I've been doing everything wrong the last two years, I feel this is correct. I realize it's most likely wrong. Someone please explain to me what I am doing wrong and more important why.

F = -be^(-a*v) = m dv/dt, a and b are constants.

m [inte]vov e^(a*v) dv = -b [inte]to=0t dt

m/a e^(a(v - vo)) = -b*t

ln[e^(a(v - vo))] = ln[-abt/m]

a(v - vo) = ln[-abt/m]

v(t) = 1/a ln[-abt/m] + vo

dx/dt = v(t) = 1/a ln[-abt/m] + vo

[inte]xo=ox dx = [inte]to=ot1/a ln[-abt/m] + vodt

x(t) = t/a[ln(-a*b*t/m) + a*vo -1]
 
Last edited:
Physics news on Phys.org
Originally posted by frankR
m [inte]vov e^(a*v) dv = -b [inte]to=0t dt

m/a e^(a(v - vo)) = -b*t

Your mistake is in the last line here. When you do the integral, you have to evaluate exp(av) at v and at v0 and subtract, to get:

exp(av)-exp(av0).

This does not equal:

exp(a(v-v0)),

which is what you have. Incidentally, this is the same basic mistake that I pointed out in "Part I" of this problem, except there you did it with the inverse function (natural log), when you used the invalid rule:

ln(a+b)=ln(a)+ln(b).
 
m/a e^(a*v)|vov = -b*t

m/a(e^(a*v) - e^(a*vo) = -b*t

Okay now that makes sense.

Thanks.

Edit: Hopefully I won't make that mistake again.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top