Morbius said:
An explosion of 700 tonnes is within the minimum one can do with a nuke.
What is the minimum nuclear charge threshold for a thermonuclear detonation?
.7 kt is the minimum thermonuclear charge threshold?
Teller blast cavity radius:
R = C \frac{Y^{\frac{1}{3}}}{(\rho h)^{\frac{1}{4}}}
C = 57.70 - 60.48 Granite
Y = kt (kilotons)
rho = 2.7 Mg*m^-3 (Megagrams per cubic meter)
h = depth m (meters)
Thermonuclear threshold blast cavity radius: (.7 kt)
R = 60.48 \frac{.7^{\frac{1}{3}}}{(2.7 h)^{\frac{1}{4}}}
R(h) = \frac{41.893}{h^{\frac{1}{4}}}
\boxed{R(100) = 13.248 \; \text{m}}
A .7 kt thermonuclear charge at a depth of 100 meters inside solid granite will produce a blast cavity radius equivalent to 13.248 meters.
kiloton blast cavity radius:
R(h) = \frac{60.48}{(2.7 \cdot h)^{\frac{1}{4}}} = \frac{47.181}{h^{\frac{1}{4}}}
R(h) = \frac{47.181}{h^{\frac{1}{4}}}
\boxed{R(100) = 19.125 \; \text{m}}}
A 1 kt thermonuclear charge at a depth of 100 meters inside solid granite will produce a blast cavity radius equivalent to 19.125 meters.
1 kt in tuff at 122 m can produce a crater with a radius of 20.2 m
Penetrator finite yield strength = target impact pressure:
Y_t = \frac{\rho_t v^2}{2}
Penetrator velocity threshold: (.7 kt)
v_t(Y_t) = \sqrt{\frac{2 Y_t}{\rho_t}} = \sqrt{\frac{2(.7 \cdot 4.184 \cdot 10^{12} \; \text{J})}{2700 \; \text{kg} \cdot \text{m}^{-3}}
\boxed{v_t(.7 \; \text{kt}) = 46.577 \; \text{km} \cdot {s}^{-1}}
Penetrator velocity threshold: (1 kt)
v_t(Y_t) = \sqrt{\frac{2 Y_t}{\rho_t}} = \sqrt{\frac{2(4.184 \cdot 10^{12} \; \text{J})}{2700 \; \text{kg} \cdot \text{m}^{-3}}
\boxed{v_t(1 \; \text{kt}) = 55.671 \; \text{km} \cdot {s}^{-1}}
[/Color]
Reference:
http://nuclearweaponarchive.org/Library/Effects/UndergroundEffects.html