Minimum Period of Oscillation Disk

Click For Summary
To find the minimum period of oscillation for a disk, the pivot point must be located at a distance d from the center of mass, where d = R/sqrt(2). The discussion highlights confusion regarding the derivative and the treatment of constants like R^2. It is emphasized that the derivative should be set to zero to find critical points, and simplification is not necessary during this process. Additionally, the final answer should reflect the distance from the rim, which is R - d. Clarification on these points helps guide the solution effectively.
Airp
Messages
23
Reaction score
0

Homework Statement


how far from the rim of a disk of Radius R must the pivot point be located in order for its period of oscillation to be a minmum where R is the distance from the point to the centre of mass?

I'm stuck at the derivative because I saw a similar problem where the answer is T=R/sqrt(2) but if you look at where I am right now the derivative of the whole thing is a bit too big. So I think I might have made a mistake or I have no idea how to do a derivative at all (also I'm wondering what to do with R^2 since it is a constant) and I would like to have some input from other people as to if I'm on the right track, because I feel lost.

Any help would be greatly appreciated! :)

Homework Equations


2+d^{2}}{dg}}.gif

3. The Attempt at a Solution [/B]

IMG_20160209_160016.jpg
 

Attachments

  • IMG_20160209_160016.jpg
    IMG_20160209_160016.jpg
    29.9 KB · Views: 623
Physics news on Phys.org
Airp said:

Homework Statement


how far from the rim of a disk of Radius R must the pivot point be located in order for its period of oscillation to be a minmum where R is the distance from the point to the centre of mass?
I think you mean to say d is the distance from the point to the centre of mass (not R; that's the radius).
I'm stuck at the derivative because I saw a similar problem where the answer is T=R/sqrt(2)
I think you mean to say d = \frac{R}{\sqrt{2}}.
but if you look at where I am right now the derivative of the whole thing is a bit too big. So I think I might have made a mistake or I have no idea how to do a derivative at all (also I'm wondering what to do with R^2 since it is a constant) and I would like to have some input from other people as to if I'm on the right track, because I feel lost.

Any help would be greatly appreciated! :)

Homework Equations


2+d^{2}}{dg}}.gif

3. The Attempt at a Solution [/B]

View attachment 95586
You seem to be on the right track so far, except somewhere along the way you lost a value of "2" in one of your terms.

Try that again starting with
T = 2 \pi \sqrt{\frac{d}{g} + \frac{R^2}{2gd}}

and keep plugging away with the derivative of that.

There's no need to simplify too much along the way. Since you are setting the derivative equal to zero, some of the more scary parts go way quite quickly. What's left over is pretty manageable.

[Edit: Oh, and one last thing: don't forget that the problem isn't asking for d itself, but rather R - d, since it says "how far from the rim." But you can make that as your final step.]

[Another edit: I corrected an unintentional omission of 2 \pi in my equation.]
 
Last edited:
  • Like
Likes Airp
Thank You!
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...