MM ether experiment/length contraction

  • Thread starter Thread starter Pengwuino
  • Start date Start date
  • Tags Tags
    Contraction Ether
Pengwuino
Gold Member
Messages
5,112
Reaction score
20
Ok I have this equations Michelson and Morley used:

Delta t = t_2 - t_1 = \frac{2}{c}(\frac{{l_2 }}{{\sqrt {1 - \frac{{v^2 }}{{c^2 }}} }} - \frac{{l_1 }}{{1 - \frac{{v^2 }}{{c^2 }}}})

I need to show that if the length is contracted along the direction of motion, the result comes out to be 0. My question is, which direction is the direction of motion? I have a feeling its L1...
 
Physics news on Phys.org
Yeah, take a look at how this formula is derived. The factor of 1 - v^2/c^2 comes from the fact that the Earth moves at v wrt to the ether (take all this with a grain of salt), and the beam moves at c relative to the ether, so in the Earth frame, the beam is chasing after the target in the direction of motion with a relative speed of c - v on the way there, and rushing back towards the beamsplitter with a relative speed of c + v on the way back.. So if you work it out, the time it takes to make a round trip along the arm in the direction of motion is given the the expression involving l1, so obviously l1 is the arm in the direction of motion.

The expression involving l2 is more complicated because this is motion perpendicular to the Earth's motion, which amounts to motion diagonally through the ether.
 
Alright thanks. I needed to use the length contraction to show how delta t would = 0 if applied and it worked! woohoo.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top