Modelling The Sun’s Magnetic Field

AI Thread Summary
The discussion focuses on developing a solar wind outflow model that incorporates magnetism through the MHD equations, starting with a simplified north-south magnetic dipole approximation. The participant seeks recommendations for resources, specifically books on stellar winds that include the Weber-Davis model, and guidance on calculating the magnetic field in a 2D solar model. Key points include the importance of the Alfven radius in understanding the transition from a strong dipole field to an outflow-type field, which is crucial for angular momentum transfer. The model currently assumes radial emission without accounting for solar rotation, and the participant aims to enhance it by integrating magnetism. The conversation emphasizes the complexity of merging different magnetic field behaviors in solar wind modeling.
JvanDyne
Messages
3
Reaction score
0
I’m currently constructing a solar wind outflow model, incrementally relaxing a series of initial assumptions in a stage-by-stage process. I’ve now arrived at the stage where I want to consider magnetism – and the MHD equations. My plan is, in what seems the simplest starting point, to approximate the sun’s magnetic field as a north-south magnetic dipole. My question is, therefore, given I am (as a maths student) an EM newbie, are there any recommend books, etc, w/r/t/ my particular interests, and secondly, more mathematically, how would I, assuming a 2D solar model and obvious spherical polars, calculate the magnetic field at any point?

Thanks. And thanks again if you understood that.

EDIT: This - http://seismo.berkeley.edu/~rallen/eps122/lectures/L05.pdf (pages 3,4,5,6) - seems, for the earth, to exactly calculate what I'm talkling about, but I don't quite follow the absent steps(?).
 
Last edited:
Astronomy news on Phys.org
Any book on winds that includes the Weber-Davis model would be the starting point. Just go to a library and scan the books on stars for one that has those words in its appendix or table of contents, or google for class lecture notes on that. W-D is 1D, for a journal article on 2D, try http://adsabs.harvard.edu/full/1985A&A...152..121S. The first key thing you will find is that your outflow model must change the situation significantly from a 2D dipole, but that does not necessarily mean more complexity. What's hard is to merge the dipole lower down where the field is strong with the outflow-type field farther out (and then way far out, the solar rotation gives you a "Parker spiral."). That first transition is of significant importance to how the wind carries off angular momentum, and is a subject of current research! Weber-Davis will show you that the transition happens gradually, but can be treated for some purposes as if it occurred rapidly at the Alfven radius. So perhaps your study should begin with the concept of an "Alfven radius"-- you can google that too (but beware, some people treat it like a sudden transition, and it's not-- that's just an as if.)
 
Last edited:
Ken G said:
Any book on winds that includes the Weber-Davis model would be the starting point. Just go to a library and scan the books on stars for one that has those words in its appendix or table of contents, or google for class lecture notes on that. W-D is 1D, for a journal article on 2D, try http://adsabs.harvard.edu/full/1985A&A...152..121S. The first key thing you will find is that your outflow model must change the situation significantly from a 2D dipole, but that does not necessarily mean more complexity. What's hard is to merge the dipole lower down where the field is strong with the outflow-type field farther out (and then way far out, the solar rotation gives you a "Parker spiral."). That first transition is of significant importance to how the wind carries off angular momentum, and is a subject of current research! Weber-Davis will show you that the transition happens gradually, but can be treated for some purposes as if it occurred rapidly at the Alfven radius. So perhaps your study should begin with the concept of an "Alfven radius"-- you can google that too (but beware, some people treat it like a sudden transition, and it's not-- that's just an as if.)
Thanks, I'll check it out.

I should have been clearer with where I'm currently at: I have been, up to this point, largely shadowing some of the very early work by, in fact, Eugene Parker. My current model neglects rotation, presuming outwardly radial emission and velocity, with dependences of temperature, pressure and density. It is in an embryonic early form, and I have been tasked with continuing to improve it. -- i.e. with the introduction of magnetism and the MHD equations (my choice).
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...
Back
Top