PFStudent
- 169
- 0
Homework Statement
Show that the form of Newton's Second Law is invariant under:
(a). a Galilean Transformation (GT) in 1-Dimension.
(b). a Galilean Transformation (GT) in 2-Dimensions.
(c). a Galilean Transformation (GT) in 3-Dimensions.
Homework Equations
Newton's Second Law.
<br /> {{\sum_{}^{}}{\vec{F}}} = {m{\vec{a}}}{\,}{\,}{\text{[N.II.L.]}}<br />
GT for 1-D
<br /> {{x}^{\prime}} = {{x}-{vt}}<br />
<br /> {{y}^{\prime}} = {y}<br />
<br /> {{z}^{\prime}} = {z}<br />
<br /> {{t}^{\prime}} = {t}<br />
GT for 2-D
<br /> {{x}^{\prime}} = {{x}-{{v}{\left({\frac{x}{\sqrt{{x^2}+{y^2}}}}\right)}{t}}}<br />
<br /> {{y}^{\prime}} = {{y}-{{v}{\left({\frac{y}{\sqrt{{x^2}+{y^2}}}}\right)}{t}}}<br />
<br /> {{z}^{\prime}} = {z}<br />
<br /> {{t}^{\prime}} = {t}<br />
GT for 3-D
<br /> {{x}^{\prime}} = {{x}-{{v}{\left({\frac{x}{\sqrt{{x^2}+{y^2}+{z^2}}}}\right)}{t}}}<br />
<br /> {{y}^{\prime}} = {{y}-{{v}{\left({\frac{y}{\sqrt{{x^2}+{y^2}+{z^2}}}}\right)}{t}}}<br />
<br /> {{z}^{\prime}} = {{z}-{{v}{\left({\frac{z}{\sqrt{{x^2}+{y^2}+{z^2}}}}\right)}{t}}}<br />
<br /> {{t}^{\prime}} = {t}<br />
The Attempt at a Solution
I'm not sure exactly where to begin here. Particularly, how to proceed in the: 2-D and 3-D; cases since I have extra variables to deal with in those GT equations.
Thanks,
-PFStudent
Last edited: