Gabriel Maia
- 70
- 1
This is more of a conceptual question and I have not had the knowledge to solve it.
We're given a modified quantum harmonic oscillator. Its hamiltonian is
H=\frac{P^{2}}{2m}+V(x)
where V(x)=\frac{1}{2}m\omega^{2}x^{2} for x\geq0 and V(x)=\infty otherwise.
I'm asked to justify in terms of the parity of the quantum problem eigenfunctions why only odd integers n are allowed for the eigenenergies of the problem E=(n+1/2)\hbar\omega
I have not a clue... well... actually my best guess was that the given potential impose the condition that the wavefunction is zero at x=0 and this is only the case for the odd ones. I'm confident about it but I could not find a problem like this anywhere to check my answer.
Thank you.
We're given a modified quantum harmonic oscillator. Its hamiltonian is
H=\frac{P^{2}}{2m}+V(x)
where V(x)=\frac{1}{2}m\omega^{2}x^{2} for x\geq0 and V(x)=\infty otherwise.
I'm asked to justify in terms of the parity of the quantum problem eigenfunctions why only odd integers n are allowed for the eigenenergies of the problem E=(n+1/2)\hbar\omega
I have not a clue... well... actually my best guess was that the given potential impose the condition that the wavefunction is zero at x=0 and this is only the case for the odd ones. I'm confident about it but I could not find a problem like this anywhere to check my answer.
Thank you.
Last edited: