Modules with multiple operators

cjellison
Messages
18
Reaction score
0
Consider the set of 2x2 matrices which form a ring under matrix multiplication and matrix addition.

\mathbb{R}^3 is module defined over this ring.

So, we have three dimensional vectors whose elements are 2x2 matrices.

My question: Can I also define another "scalar multiplication" that is over the field of real numbers (well, I know you can)...what is such a structure called? For example, I want it to do the following:

<br /> 3<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> = <br /> \begin{pmatrix}<br /> 3<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> 3\begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> 3\begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> 3\begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 3a &amp; 3b\\<br /> 3c &amp; 3d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 3 &amp; 3\\<br /> 3 &amp; 3<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 3 &amp; 6\\<br /> 12 &amp; 9<br /> \end{pmatrix}<br /> \end{pmatrix}<br />

in addition to:

<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> = <br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =\begin{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br />
 
Physics news on Phys.org
cjellison said:
Consider the set of 2x2 matrices which form a ring under matrix multiplication and matrix addition.

\mathbb{R}^3 is module defined over this ring.
Not automatically, so you have to define the module operation. How does a ##2\times 2 ## matrix operate on a three dimensional vector?
So, we have three dimensional vectors whose elements are 2x2 matrices.
This is another scenario, namely the vector space ##\left( \mathbb{M}(2,\mathbb{R}) \right)^3##.
My question: Can I also define another "scalar multiplication" that is over the field of real numbers (well, I know you can)...what is such a structure called? For example, I want it to do the following:

<br /> 3<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> 3<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> 3\begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> 3\begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> 3\begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 3a &amp; 3b\\<br /> 3c &amp; 3d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 3 &amp; 3\\<br /> 3 &amp; 3<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 3 &amp; 6\\<br /> 12 &amp; 9<br /> \end{pmatrix}<br /> \end{pmatrix}<br />

in addition to:

<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 0\\<br /> 0 &amp; 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =\begin{pmatrix}<br /> \begin{pmatrix}<br /> a &amp; b\\<br /> c &amp; d<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 1\\<br /> 1 &amp; 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 &amp; 0\\<br /> 0 &amp; 0<br /> \end{pmatrix}<br /> &amp;<br /> \begin{pmatrix}<br /> 1 &amp; 2\\<br /> 4 &amp; 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br />
No problem, it is a vector space, i.e. an ##\mathbb{R}-##module.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top