cjellison
- 18
- 0
Consider the set of 2x2 matrices which form a ring under matrix multiplication and matrix addition.
\mathbb{R}^3 is module defined over this ring.
So, we have three dimensional vectors whose elements are 2x2 matrices.
My question: Can I also define another "scalar multiplication" that is over the field of real numbers (well, I know you can)...what is such a structure called? For example, I want it to do the following:
<br /> 3<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> = <br /> \begin{pmatrix}<br /> 3<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> 3\begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> 3\begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> 3\begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 3a & 3b\\<br /> 3c & 3d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 3 & 3\\<br /> 3 & 3<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 3 & 6\\<br /> 12 & 9<br /> \end{pmatrix}<br /> \end{pmatrix}<br />
in addition to:
<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> = <br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =\begin{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br />
\mathbb{R}^3 is module defined over this ring.
So, we have three dimensional vectors whose elements are 2x2 matrices.
My question: Can I also define another "scalar multiplication" that is over the field of real numbers (well, I know you can)...what is such a structure called? For example, I want it to do the following:
<br /> 3<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> = <br /> \begin{pmatrix}<br /> 3<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> 3\begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> 3\begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> 3\begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 3a & 3b\\<br /> 3c & 3d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 3 & 3\\<br /> 3 & 3<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 3 & 6\\<br /> 12 & 9<br /> \end{pmatrix}<br /> \end{pmatrix}<br />
in addition to:
<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> = <br /> \begin{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br /> =\begin{pmatrix}<br /> \begin{pmatrix}<br /> a & b\\<br /> c & d<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 1\\<br /> 1 & 1<br /> \end{pmatrix}\\<br /> \begin{pmatrix}<br /> 0 & 0\\<br /> 0 & 0<br /> \end{pmatrix}<br /> &<br /> \begin{pmatrix}<br /> 1 & 2\\<br /> 4 & 3<br /> \end{pmatrix}<br /> \end{pmatrix}<br />