Hello everyone!(adsbygoogle = window.adsbygoogle || []).push({});

New member here, as an ME major I always seem to come across very valuable information here, so I figured I would see if possibly someone here could help me.

The problem I am dealing with involves modeling a car through certain motions such as hitting a speed bump, and part of this is finding the moment of inertia.

The vehicle weight distribution is as follows;

Total Weight = 2063.85 kg

Weight Distributions;

Front = 57.9% = 1194.97 kg

Rear = 42.1% = 868.88 kg

I'll try and ask this as clear as possible, please bear with me.

I am confused when it comes to evaluating this. Assume that I am correct in creating a simple model by modeling it as a rod (1/12)(m)(l^2). I am not sure if I should use the center of the overall length, combined with the parallel axis theorem, or if I should be looking more into the radius of gyration. Also, when using these, should I determine first the center of gravity for the weight distribution (making l1 > l2), and then solve with those values?

Any and all input is very much appreciated, I feel as though I am very close but I am definitely missing some key differences between the methods. I have included a simple diagram to aid in visualizing my problem statement.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Moment of Inertia - center of a rod w/ unequal distribution

**Physics Forums | Science Articles, Homework Help, Discussion**