What is the moment of inertia of a cone spinning about its symmetry axis?

AI Thread Summary
The discussion focuses on calculating the moment of inertia of a uniform cone spinning about its symmetry axis. The initial attempt involved using the integral I = ∫R^2dm, but the approach was critiqued for not properly accounting for the varying radius of the disks formed by slicing the cone. A suggestion was made to use the known moment of inertia of a disk and integrate it across the height of the cone for a more straightforward solution. Emphasis was placed on clearly documenting reasoning at each step to facilitate understanding and assessment. The correct moment of inertia for the cone is ultimately determined to be (3/10)MR^2.
oliveyew1
Messages
1
Reaction score
0

Homework Statement



Find the moment of inertia and center of mass of:
A uniform cone of mass M, height h, and
base radius R, spinning about its symmetry
(x) axis.

Homework Equations



I = ∫R^2dm

The Attempt at a Solution



I tried using I =∫R^2dm, solving for dm I got dm=(M/V)dV, with dV = piR^2*dx. Thus, ∫R^2*(M/V)piR^2*dx V = 1/3*piR^2*h, so ∫R^2*M*(1/(1/3*piR^2*h))piR^2dx. Pi and R^2 cancel, so ∫3(M/h^3)R^2x^2dx, which gets me MR^2, and the right answer is (3/10)MR^2

Homework Statement

 
Physics news on Phys.org
The idea is that r is the perpendicular distance from the rotation axis of a small mass dm ... the moment of inertia of that mass is r2dm ... and you add up all the wee masses. It looks to me that you may have attempted to use a method intended for a point mass on a cylindrical one.

You appear to have adopted the strategy of slicing the cone into disks with x being the rotational axis. So the disks have thickness ##dx## and area ##\pi r^2 ## did you realize that the radius of the disk at x s a function of x?

You have a better shortcut though - you already know the moment of inertia of a disk ;) So why not just add them up? $$I=\int_0^h I_{disk}(x)dx$$

The best way to handle these is to write down you reasoning at each step - in words.
Avoids the need for this kind of guesswork on the part of people checking and/or marking your work ;)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top