Moment of Inertia of this combined system?

AI Thread Summary
The moment of inertia for a rod rotated around one end is calculated as 1/3ML^2, while for a sphere it is 2/5MR^2. The total moment of inertia for the combined system should include an additional ML^2 term due to the need to apply the parallel axis theorem correctly. This theorem requires both objects' axes to be shifted to the same point, which was not done for the sphere in the initial calculation. The axis of rotation is perpendicular to the rod and located at the end opposite the sphere, confirming the need for this adjustment.
jaewonjung
Messages
9
Reaction score
0
Homework Statement
A rigid rod of mass M and length L has moment of inertia 1/12 ML^2 about its center of mass. A sphere of mass m and radius R has moment of inertia 2/5 MR^2 about its center of mass. A combined system is formed by centering the sphere at one end of the rod and placing an axis at the other.


What is the moment of inertia of the combined system?
Relevant Equations
SumI=I1+I2+I3...
I=MR^2
Moment of inertia for a rod rotated around one end is 1/3ML^2 using the parallel axis theorem
Moment of inertia for a sphere is 2/5 MR^2

Itotal=Isphere+Irod=2/5MR^2+1/3ML^2

However, the answer is 2/5MR^2+1/3ML^2+ML^2

Why is there an extra ML^2 added to the moment of inertia?
 
Physics news on Phys.org
jaewonjung said:
Moment of inertia for a rod rotated around one end is 1/3ML^2 using the parallel axis theorem
Moment of inertia for a sphere is 2/5 MR^2

Itotal=Isphere+Irod=2/5MR^2+1/3ML^2

However, the answer is 2/5MR^2+1/3ML^2+ML^2

Why is there an extra ML^2 added to the moment of inertia?

So you need to use the parallel axis theorem properly here. When you have compound systems, you need to shift both of their axes to the same point. You have done so for the rod, but not for the sphere. That moment of inertia is still through the centre of the sphere.

Also, always best to shift both separately to the same point and then add, rather than vice versa.

Hope that helps.
 
Master1022 said:
Just for my understanding, which is the direction of the axis? Just to confirm that it is out of the plane of the rod?
Sorry for not including a picture. The axis is perpendicular to the rod, and is placed at the end of the rod that doesn't have the sphere attached to it.
 
Master1022 said:
So you need to use the parallel axis theorem properly here. When you have compound systems, you need to shift both of their axes to the same point. You have done so for the rod, but not for the sphere. That moment of inertia is still through the centre of the sphere.

Also, always best to shift both separately to the same point and then add, rather than vice versa.

Hope that helps.
I see. shifting the axis from the center of the sphere to the other end of the rod is ML^2.
Thanks!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top