Moment of Inertia of two small bars

AI Thread Summary
The discussion focuses on calculating the moment of inertia for a uniform bar with two small balls attached at its ends. The user initially struggles with the correct formulas, specifically using the moment of inertia for a rigid body and point masses. After some guidance, they compute the moment of inertia for various axes, confirming their calculations for the first two parts as correct. The conversation also touches on the relationship between the center of mass and moment of inertia, concluding that for this scenario, using traditional methods is more straightforward. Overall, the user gains clarity on the calculations and the application of the Parallel Axis Theorem.
jaredmt
Messages
120
Reaction score
0

Homework Statement


A uniform bar has two small balls glued to its ends. The bar is 2m long and has mass 4kg, while the balls each have mass .5kg and can be treated as point masses. Find the moment of inertia of this combination about each of the following axes: (a) an axis perpendicular to the bar through its center; (b) an axis perpendicular to the bar though one of the balls; (c) an axis parallel to the bar through both balls; (d) an axis parallel to the bar and .5m from it.


The Attempt at a Solution



i tried the formula: (1/12)(ML^2) but that got the wrong answer and i assume because the balls at the end changed it. I am not sure what to do... any help would be very much appreciated
 
Physics news on Phys.org
Yes, the balls change the total moment of inertia. If you take a look at how the moment of inertia is defined for a rigid body of point masses then you should find the answers to your questions. If you don't find it in your book, I can recommend wikipedia :)
 
ok i believe i found the answers but I am not entirely sure if i did it all correctly so please correct me if my proceedure was wrong:

a) I = (1/12)(4kg)(2m)^2 + 2(.5kg)(1m)^2 = 1.33 + 1 = 2.33 kgm^2
the first part i got the formula as i described above. then for the last part: 2 is because there is a total of 2 balls (1 on each side) and .5kg is the mass of each then 1m is the distance the balls are from the center

b) I = (1/3)(4kg)(2m)^2 + .5kg(2m)^2 = 5.33 + 2 = 7.33 kgm^2
the first part i got from this formula: (1/3)(mass)(distance)^2
the second part(for the ball) i just have as (mass)(distance)^2

also, one more question: is there a way that i could throw the center of mass into a formula to find the moment of inertia? or do i have to break it up into 2 parts like this? because i found that the center of the mass, going from the center-point to the end-point, is .6m from the center. but i plugged it into formulas and it didnt come out right
 
Last edited:
jaredmt said:
also, one more question: is there a way that i could throw the center of mass into a formula to find the moment of inertia? or do i have to break it up into 2 parts like this? because i found that the center of the mass, going from the center-point to the end-point, is .6m from the center. but i plugged it into formulas and it didnt come out right

The Moment of Inertia for N point masses is defined as
I = \sum^{N}_{i=1} m_{i} r_{i}^{2}

The Center of Mass for N point masses is
\vec{R} = \frac{\sum m_{i} \vec{r}_{i}}{\sum m_{i}}

Considering that \vec{R} is a vector and I is a scalar, I can't think of any easy way to define one in terms of the other.

And considering that you are only dealing with 3 masses, it's probably easiest to just chug through the old-fashioned way.
 
ok, just makin sure I am not taking any long steps when there is a much shorter step. but i don't think finding the cm and plugging in a formula would make it any shorter anyways come to think of it.

but did i find the answers correctly? or did i just somehow luck out with the right answer using the wrong formulas? the 1st parts of each formula seemed right, i just had to plug the numbers in. but the second part, i not 100% sure. i don't see how else i could do it so I am 90% sure i have it all right
 
Both calculations look correct.

Just keep plugging along with that Parallel Axis Theorem :cool:
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top