Moment of Inertia using density of Earth

AI Thread Summary
The discussion revolves around calculating the moment of inertia of the Earth using its density function. The density is given as a function of distance from the center, leading to the formulation of mass and moment of inertia through integration. Initial calculations for both mass and moment of inertia were attempted, but the user encountered difficulties in confirming the relationship I = 0.330MR^2. Ultimately, the user resolved their issue with the help of a tutor, who clarified the limits of integration needed for the calculations. The conversation highlights the importance of proper integration limits in deriving physical properties from density functions.
musiliu
Messages
43
Reaction score
0

Homework Statement



The density of the Earth, at any distance r from its center, is approximately

p = [14.2 - 11.6 r/R] x 10^3 kg/m^3

where R is the radius of the Earth. Show that this density leads to a moment of inertia I = 0.330MR^2 about an axis through the center, where M is the mass of the Earth


Homework Equations



My teacher gave hints to the class and told us to:

--Find the mass M = integral(dm) where dm = pdV
--Break Earth into pieces with same r ---> spherical shells
so dI = (2/3)r^2 dm and I = (2/3) integral( (r^2) dm) where dm = pdV
-- dV = area x height = 4(pi r^2)dr


The Attempt at a Solution



calculated the integral for I and got
I = (2/3) [ (56800pi / 5)r^5 - (46400pi / 6R)r^6

I calculated the intral for M and got
M = (56800pi / 3)r^3 - (46400pi / 4R)r^4

now i am stuck and do not know how to show that I = 0.330MR^2
also i think my calculations are wrong..

please can someone help me figure out the problem..thanks
 
Last edited:
Physics news on Phys.org
ok, I don't need help on this problem anymore. A tutor helped me and i figured out that there are limits of integration from 0 to R..

thanks anyway.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top