Momentum-space detection of an Electron (EWP)

  • Thread starter Thread starter logic smogic
  • Start date Start date
  • Tags Tags
    Detection Electron
logic smogic
Messages
54
Reaction score
0
[SOLVED] Momentum-space detection of an Electron (EWP)

I know there have been plenty of questions about electrons, momentum, and wave packets recently - but my question is distinct (and comes with a picture!).

Question: If you ionize an atom and detect the resulting free electron wave packet, how should it appear in momentum space?

My understanding is that the spacially-localized electron wave packet (EWP) that is born during ionization will be of a Gaussian shape, due to:

\Psi(x,t) = \frac{1}{\sqrt{2 \pi \hbar}} \int^{+\infty}_{-\infty}{\phi(p)e^{i(px - Et)/\hbar} dp

and that it will spread as it moves away from the ion and towards the detector. But won't the detector still process it as either a delta function or a Gaussian (in position space)? And if so, why isn't the resulting detection in momentum space a Gaussian (the Fourier Transform)?

The picture below is of an EWP that was single photon ionized by an XUV attosecond pulse. It looks to me like a "Sinc" function, which means that in position space it would be a rectangular function. This is without scattering (off of the ion core). My question really is why does this picture look like this? Thanks!
 

Attachments

  • EWP01.JPG
    EWP01.JPG
    21.1 KB · Views: 491
Physics news on Phys.org
Oh, nevermind!

I found a paper that derives the final (drift) momentum as

p(t_{0}) = \frac{e E}{\omega} [cos(\omega t_{0}) + \gamma]

which is effectively a sinc function.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top